
Oracle database – programming Zbigniew Staszak

138

 4. Objects

Object elements have been introduced into the database and PL/SQL

language since Oracle 8 version. Objects can now be stored in the

database just like relational data. Also, the SQL language can be used

to manipulate both relational and object data. From this version of

DBMS Oracle is therefore an object-relational system.

4.1. Defining object types and their use

The object type, like the package, has its specification and its body.

As in packages, the body is not mandatory and only appears if

methods have been specified for the object type. The basic syntax for

specification of the object type is presented below.

CREATE [OR REPLACE] TYPE type_name

[AUTHID {CURRENT_USER | DEFINER}]

{{{AS | IS} OBJECT} | UNDER parent_type_name}

({attribute_name [REF] attribute_type [, …]}

 [,{[MAP | ORDER] [[NOT] OVERRIDING]

 {MEMBER | STATIC | CONSTRUCTOR}

 method_specification [, …]}]

[,{method_purity_level [, …]}])

[[NOT] INSTANTIABLE]

[[NOT] FINAL];

The AUTHID clause specifies whether the type will have the rights of

the user using it or the rights defining the type. If the AS OBJECT

clause appears in the above syntax, a base object type is defined (not

inheriting from another type). If the UNDER clause occurs, instead of

AS OBJECT, a derived type is defined that inherits from another

(specified after UNDER), already existing, object type (parent type).

The attribute type can be both a built-in type and an object type. The

attribute can also be a reference (pointer) type to an object type. In this

case the type name is preceded by the REF keyword. The

specification of the method listed after MEMBER (normal method),

STATIC (static method) or CONSTRUCTOR (the function that

defines user own constructor - since Oracle 9.2 version) is its header.

Oracle database – programming Zbigniew Staszak

139

The method can be both a function and a procedure, so its header is,

respectively:

FUNCTION function_name [({parameter [, ...]})]

RETURN returning_type

lub

PROCEDURE procedurę_name [({parameter [, ...]})]

The method can override (cover up) any method with the same name

in the parent type. In this case the OVERRIDING clause appears. In

the absence of a definition of the own constructor function with the

same name as the type name, the system defines the default

constructor for the object, with name the same as name of type. The

definition of the own constructor's function causes overriding the

default constructor. The type returned by this function must be in such

case specified by RETURN SELF AS RESULT clause. Before the

function header may be placed a MAP or ORDER element. It means

respectively mapping method or ordering method (this cannot be a

static method or a constructor method). These methods specify ways

to compare objects (without these methods, the only comparison

operators are = and <>) used, among others, under the DISTINCT,

GROUP BY and ORDER BY clauses. The mapping method, for the

object for which it was called, returns the scalar value used to

compare objects, while the ordering method gets the object (as a

parameter) to be compared with the object for which the method was

called and returns -1, 0 or 1 depending on whether the retrieved object

is smaller, equal or larger than the object for which the method was

called. The purity level of the method is determined in the same way

as in packages (the RESCRICT_REFERENCES directive) and as in

packages only applies to functions. The INSTANTIABLE and FINAL

clauses relate to inheritance. NOT INSTANTIABLE defines the

creation of an abstract type and FINAL does not allow creating child

types for the defined type (the abstract type cannot be FINAL).

Oracle database – programming Zbigniew Staszak

140

The syntax of definition of the body of the object type is as follows:

CREATE [OR REPLACE] TYPE BODY type_name {AS | IS}

{[MAP | ORDER] [[NOT] OVERRIDING]

 {MEMBER | STATIC | CONSTRUCTOR}

 definition_method_block_body [; …]}

END;

The method block contains its header and body. To refer within the

method body to the object for which the method is being called the

SELF qualifier is used. All other elements in the above definition have

the same meaning as those in the definition of the object type

specification. As already mentioned, the definition of the object type

body not occur if the type does not possess methods.

The specification of INSTANTIABLE FINAL type can be modified

according to the basic syntax presented below.

ALTER TYPE type_name

{{REPLACE [AUTHID {CURRENT_USER | DEFINER}]

 AS OBJECT ({attribute_name [REF] attribute_type [, …]}

 [, {[MAP | ORDER]

 {MEMBER | STATIC | CONSTRUCTOR}

 method_specification [, …]}])}

 |

 {{ADD | DROP} {[MAP | ORDER] MEMBER

 method_specification }

 |

 {ATTRIBUTE attribute_name

 [[REF] attribute_type]}

 {CASCADE | INVALIDATE}}

};

Most of the clauses in the above syntax have already been explained

as part of the CREATE TYPE command. The above syntax allows

one to add a method by modifying the type as a whole (REPLACE

clause) or by modifying its components (ADD or DROP clause).

When deleting an attribute, its type is not listed. CASCADE means

Oracle database – programming Zbigniew Staszak

141

cascading changes in types and dependent relations. INVALIDATE

means changes only in the modified type, without checking

connections with other types and relations. One of these two clauses

must be used.

It is not possible to modify the body of the type. Any change in the list

of the methods of type specification requires the overwriting

(redefinition) of the type body definition.

The object type specification and its body are removed using the

DROP command according to the syntax:

DROP TYPE type_name [FORCE];

DROP TYPE BODY type_name;

FORCE in the above syntax forces removal of the type regardless of

the associations of the removed type with other types or tables.

Task. Due to the growing crisis, Tiger ordered each cat to find one

additional feeding place in the form of a human farm. Data on feeding

places are to be collected in the Fedding_places relation with

attributes nickname and place_owner, where nickname and

feeding_place define the cat and the feeding place owner,

respectively. The attribute person has the object type PERSON

characterized by the name and the address, where address has

object type ADDRESS characterized by the street and the

house_number. For the PERSON type, is to be defined a mapping

method and method that returns the full details of the person (in the

form of a string). This type shall to be the basis for inheriting it by

other types. Define such a structure.

CREATE OR REPLACE TYPE ADDRESS AS OBJECT

(street VARCHAR2(25),

 house_number NUMBER(2));

TYPE ADDRESS compiled

Oracle database – programming Zbigniew Staszak

142

CREATE OR REPLACE TYPE PERSON AS OBJECT

(name VARCHAR2(15),

 person_address ADDRESS,

 MAP MEMBER FUNCTION Compare RETURN VARCHAR2,

 MEMBER FUNCTION Data RETURN VARCHAR2,

 PRAGMA RESTRICT_REFERENCES(Data,RNDS,WNDS,RNPS,WNPS))

NOT FINAL;

TYPE PERSON compiled

CREATE OR REPLACE TYPE BODY PERSON AS

 MAP MEMBER FUNCTION Compare RETURN VARCHAR2 IS

 BEGIN

 RETURN name||person_address.street||

 person_address.house_number;

 END;

 MEMBER FUNCTION Data RETURN VARCHAR2 IS

 BEGIN

 RETURN name||', '||person_address.street||

 ' street '||person_address.house_number;

 END Data;

END;

TYPE BODY PERSON compiled

CREATE TABLE Feeding_places

(nickname VARCHAR2(15) CONSTRAINT fe_pk PRIMARY KEY

 CONSTRAINT fe_ni_fk REFERENCES Cats(nickname),

 place_owner PERSON);

table FEEDING_PLACES created.

Note: The object type attribute cannot be a primary or unique

 key.

The following are examples illustrating the use of the ALTER TYPE

command for the object type ADDRESS.

ALTER TYPE ADDRESS REPLACE AS OBJECT

(street VARCHAR2(25),

 house_number NUMBER(2),

 MEMBER FUNCTION Get_street RETURN VARCHAR2);

type ADDRESS altered.

Oracle database – programming Zbigniew Staszak

143

CREATE OR REPLACE TYPE BODY ADDRESS AS

 MEMBER FUNCTION Get_street RETURN VARCHAR2 IS

 BEGIN

 RETURN street;

 END;

END;

TYPE BODY ADDRESS compiled

ALTER TYPE ADDRESS

ADD ATTRIBUTE apartnment_no NUMBER

INVALIDATE;

type ADDRESS altered.

ALTER TYPE ADDRESS

ADD MEMBER FUNCTION Get_house_no RETURN NUMBER

INVALIDATE;

type ADDRESS altered.

CREATE OR REPLACE TYPE BODY ADDRESS AS

 MEMBER FUNCTION Get_street RETURN VARCHAR2 IS

 BEGIN

 RETURN street;

 END;

 MEMBER FUNCTION Get_house_no RETURN NUMBER IS

 BEGIN

 RETURN house_number;

 END;

END;

TYPE BODY ADDRESS compiled

ALTER TYPE ADDRESS

DROP MEMBER FUNCTION Get_house_no RETURN NUMBER

INVALIDATE;

type ADDRESS altered.

ALTER TYPE ADDRESS

DROP MEMBER FUNCTION Get_street RETURN VARCHAR2

INVALIDATE;

type ADDRESS altered.

ALTER TYPE ADDRESS

DROP ATTRIBUTE apartnment_no

INVALIDATE;

type ADDRESS altered.

DROP TYPE BODY ADDRESS;

type body ADDRESS dropped.

Oracle database – programming Zbigniew Staszak

144

Data for the Fedding_places relation can be entered, using in the

INSERT command, default constructors of objects.

INSERT INTO Feeding_places

 VALUES('TIGER',PERSON('JAN',ADDRESS('FIELD',2)));

INSERT INTO Feeding_places

 VALUES('LOLA',PERSON('JAN',ADDRESS('FIELD',2)));

INSERT INTO Feeding_places

 VALUES('BOLEK',PERSON('SOPHIE',ADDRESS('LONG',7)));

INSERT INTO Feeding_places

 VALUES('SMALL',PERSON('ADAM',ADDRESS('WET',21)));

1 rows inserted.

1 rows inserted.

1 rows inserted.

1 rows inserted.

Task. Display nicknames of cats along with their feeding places.

SELECT nickname "Cat",F.place_owner.Data() "Feeding place"

FROM Feeding_places F

ORDER BY place_owner;

Cat Feeding place

--------------- --------------------------

SMALL ADAM, WET street 21

TIGER JAN, FIELD street 2

LOLA JAN, FIELD street 2

BOLEK SOPHIE, LONG street 7

The above solution uses the Data method and, implicitly, mapping

method Compare, which allows one to order the resulting rows by the

value of the object place_owner. The condition of referring to fields

or methods of an object is specifying the name of the relation

containing the object (or its alias specified in the FROM clause)

before referring to the field or method.

Relations with objects one can join with classic relations.

Oracle database – programming Zbigniew Staszak

145

Task. Display nicknames of male cats along with their feeding places.

SELECT nickname "Cat",F.place_owner.Data() "Feeding place"

FROM Feeding_places F NATURAL JOIN Cats

WHERE gender='M';

Cat Feeding place

--------------- --------------------------

SMALL ADAM, WET street 21

TIGER JAN, FIELD street 2

BOLEK SOPHIE, LONG street 7

One can also perform grouping by objects (implicit using of the

mapping method here) and by object fields.

Task. Specify how many cats reside in each feeding place.

SELECT place_owner "Place owner",COUNT(*) "Number of cats"

FROM Feeding_places

GROUP BY place_owner;

Place owner Number of cats

-- ---------------

Z.PERSON('ADAM',Z.ADDRESS('WET',21)) 1

Z.PERSON('JAN',Z.ADDRESS('FIELD',2)) 2

Z.PERSON('SOPHIE',Z.ADDRESS('LONG',7)) 1

SELECT F.place_owner.name "Host",COUNT(*) "Number of cats"

FROM Feeding_places F

GROUP BY F.place_owner.name;

Host Number of cats

--------------- ----------------------

SOPHIE 1

ADAM 1

JAN 2

Allowed is also modification of entire objects and their fields.

Oracle database – programming Zbigniew Staszak

146

Task. Provide to the cat with the nickname 'BOLEK' a new host and

then change the name of this host to 'KLAUDIA'.

UPDATE Feeding_places

SET place_owner=PERSON('KAROLA',ADDRESS('GREEN',16))

WHERE nickname='BOLEK';

1 rows updated.

UPDATE Feeding_places F

SET F.place_owner.name='KLAUDIA'

WHERE nickname='BOLEK';

1 rows updated.

ROLLBACK;

rollback complete.

To objects and their fields one can also reference in the HAVING

clause and the WHERE clause of SELECT query, and in the WHERE

clause of DML commands. Object types used in the above way (as

types of relation attributes) do not significantly affect the way of

defining database queries. The objects used in this way are called

column objects.

Another type of objects are so-called row objects. A relation using a

row object consists of rows that are objects (row objects). Such a

relation is defined according to the syntax:

CREATE TABLE relations_name OF name_of_row_object_type

[({relations_constraint [, ...]})];

Each relation row object has an OID identifier assigned by the system.

The identifier value can be obtained by using the REF

function/operator in the SELECT query, whose argument is an alias

for the relation with the row object. It should be noted that all

constraints of object (including those related to individual object

fields) are not specified as part of the object type definition but only as

part of the relation definition consisting of elements of this type

(through relation constraints). The primary key of the relation with

the row object cannot be based on a field of reference type (REF).

If in the object is no other key candidate, an additional attribute must

be defined in object, which will be act as artificial key of the relation.

Oracle database – programming Zbigniew Staszak

147

Task. Define a relation with row object of type PERSON and then fill

this relation with data.

CREATE TABLE PersonsR OF PERSON

(CONSTRAINT psr_pk PRIMARY KEY (name));

table PERSONSR created.

INSERT INTO PersonsR VALUES(PERSON('JAN',ADDRESS('FIELD',2)));

INSERT INTO PersonsR VALUES('SOPHIE',ADDRESS('LONG',7));

INSERT INTO PersonsR VALUES('ADAM',ADDRESS('WET',21));

1 rows inserted.

1 rows inserted.

1 rows inserted.

As the example above shows, in the INSERT command working on a

relation with a row object, there is no need to explicitly point to the

name of the constructor of that object. If the row object contains

nested objects, the use of nested object constructor names is required.

In a SELECT query based on a relation with row object, containing

nested objects, nested objects can only be referenced by using the

VALUE operator/function returning the row object. The operator's

argument can only be an alias of relation with row object.

Task. Display, remembered in the PerdonsR relation, names of

persons and street names where they live.

SELECT name "Name",VALUE(P).person_address.street "Street"

FROM PersonsR P;

Name Street

--------------- -------------------------

JAN FIELD

ZOFIA LONG

ADAM WET

As mentioned, to get the value OID identifier, one should use the REF

function with argument is, similarly like in function VALUE, being

an alias for the relation with the row object. The VALUE and REF

functions can also be used as part of PL/SQL commands

Oracle database – programming Zbigniew Staszak

148

For other SQL commands working on relations with row objects,

similar rules apply as for relations with column objects.

As already mentioned, to the fields of object type as well as to their

components one can reference in the WHERE clause of SQL

command. Such searching can be accelerated by defining the

appropriate index. Indexes for components of object type, being non-

object, both for column and row objects, are defined according to

standard syntax. However, one cannot apply indexes to entire fields of

object type.

Task. Define the index for the attribute place_owner in the

Feeding_places relation and the index for the street attribute of

the PersonsR relation.

.
CREATE INDEX Feeding_places_name_ind

ON Feeding_places(place_owner.name);

index FEEDING_PLACES_NAME_IND created.

CREATE INDEX PersonsR_street_ind

ON PersonsR(person_address.street);

index PERSONSR_STREET_IND created.

Object types can be inherited by other object types.

Task. Tiger stated that the feeding places in the village of residence

was not enough. So he and ordered his subordinates to find one

additional feeding place outside the family village. Data of foreign

feeding places are to be collected in the Foreign_feeding_places

relation with attributes nickname and place_owner, where the

nickname is defining the cat, the place_owner defining the external

feeding place. This owner is to be described by the FOREIGN_PERSON

type differing from the PERSON type only by the parameter specifying

the city of residence of the feeding place owner. For the type

FOREIGN_PERSON, a method should be defined that returns, in the

form of a string, the full details of the owner of the external feeding

place. This type is no longer to be inherited.

Oracle database – programming Zbigniew Staszak

149

CREATE OR REPLACE TYPE FOREIGN_PERSON UNDER PERSON

(city VARCHAR2(25),

 MEMBER FUNCTION Foreign_data RETURN VARCHAR2,

 PRAGMA RESTRICT_REFERENCES(Foreign_data,RNDS,WNDS,RNPS,WNPS))

FINAL;

TYPE FOREIGN_PERSON compiled

CREATE OR REPLACE TYPE BODY FOREIGN_PERSON AS

 MEMBER FUNCTION Foreign_data RETURN VARCHAR2 IS

 BEGIN

 RETURN city||', '||SELF.Data();

 END Foreign_data;

END;

TYPE BODY FOREIGN_PERSON compiled

CREATE TABLE Foreign_feeding_places

(nickname VARCHAR2(15) CONSTRAINT ffp_pk PRIMARY KEY

 CONSTRAINT ffp_ca_fk REFERENCES Cats(nickname),

 place_owner FOREIGN_PERSON);

table FOREIGN_FEEDING_PLACES created.

INSERT INTO Foreign_feeding_places

VALUES('TIGER',FOREIGN_PERSON('MARIA',ADDRESS('GOLD',22),

 'WARSZAWA'));

INSERT INTO Foreign_feeding_places

VALUES('LOLA',FOREIGN_PERSON('MARIA',ADDRESS('GOLD',22),

 'WARSZAWA'));

INSERT INTO Foreign_feeding_places

VALUES('BOLEK',FOREIGN_PERSON('CHARLES',ADDRESS('CARBON',17),

 'KATOWICE'));

INSERT INTO Foreign_feeding_places

VALUES('SMALL',FOREIGN_PERSON('ROMAN',ADDRESS('POTATO',11),

 'POZNAN'));

1 rows inserted.

1 rows inserted.

1 rows inserted.

1 rows inserted.

Oracle database – programming Zbigniew Staszak

150

Task. Display nicknames of cats along with the data of their foreign

feeding places.

SELECT nickname "Cat",

 SUBSTR(F.place_owner.Foreign_data(),1,45)

 "Emergency feeding place"

FROM Foreign_feeding_places F;

Cat Emergency feeding place

--------------- ---

TIGER WARSZAWA, MARIA, GOLD street 22

LOLA WARSZAWA, MARIA, GOLD street 22

BOLEK KATOWICE, CHARLES, CARBON street 17

SMALL POZNAN, ROMAN, POTATO street 11

An alternative way of defining reference relationships in relation to

classic foreign keys may be the use of reference types (types defined

by the REF keyword placed before the name of the object type

defining the type of the relation attribute or the type of the object

field).

Task. Each cat has only one feeding place (one host). However, the

same feeding place (i.e. the estate of the same host) can be inhabited

by many cats. Model such a relationship between entities in a classic

way (by reference relationships defined using foreign keys) and then

in an object-oriented way (using a reference type).

The classic version of the solution of the task using foreign keys:

CREATE TABLE PersonsT -- feeding places

(name VARCHAR2(15) CONSTRAINT pet_pk PRIMARY KEY,

 person_address ADDRESS);

table PERSONST created.

CREATE TABLE Feeding_placesT -- cats with reference to

feeding places

(nickname VARCHAR2(15) CONSTRAINT fpt_pk PRIMARY KEY

 CONSTRAINT fpt_ca_fk REFERENCES Cats(nickname),

 name VARCHAR2(15) CONSTRAINT fpt_pn_fk

 REFERENCES PersonsT(name));

table FEEDING_PLACEST created.

Oracle database – programming Zbigniew Staszak

151

The object version of the task solution using the relation with the

column object:

The solution consists in the definition of the relation

Feeding_placesO with the column object being the reference to the

PERSON type defining the owner of feeding place and with the

attribute specifying the cat's nickname. For reminder, the following is

also the definition of the previously defined object type PERSON and of

the relation PersonsR with a row object of this type.

CREATE OR REPLACE TYPE PERSON AS OBJECT

(name VARCHAR2(15),

 person_address ADDRESS,

 MAP MEMBER FUNCTION Compare RETURN VARCHAR2,

 MEMBER FUNCTION Data RETURN VARCHAR2,

 PRAGMA RESTRICT_REFERENCES(Data,RNDS,WNDS,RNPS,WNPS))

NOT FINAL;

TYPE PERSON compiled

CREATE OR REPLACE TYPE BODY PERSON AS

 MAP MEMBER FUNCTION Compare RETURN VARCHAR2 IS

 BEGIN

 RETURN name||person_address.street||

 person_address.house_number;

 END;

 MEMBER FUNCTION Data RETURN VARCHAR2 IS

 BEGIN

 RETURN name||', '||person_address.street||

 ' street '||person_address.house_number;

 END Data;

END;

TYPE BODY PERSON compiled

CREATE TABLE PersonsR OF PERSON

(CONSTRAINT psr_pk PRIMARY KEY (name));

table PERSONSR created.

CREATE TABLE Feeding_placesO -- cats with reference

 -- to feeding places

(nickname VARCHAR2(15) CONSTRAINT fpo_pk PRIMARY KEY

 CONSTRAINT fpo_ca_fk REFERENCES Cats(nickname),

 owner REF PERSON SCOPE IS PersonsR);

table FEEDING_PLACESO created.

Oracle database – programming Zbigniew Staszak

152

The SCOPE IS clause indicates the name of the object relation (this

cannot be a normal relation) to which objects the reference type

should refer. Here it is relation of PersonsR with a row object of the

type PERSON. The foreign key connecting Feeding_placesO relation

with Cats relation, due to the latter's existence, was defined in a

relational way.

Below, the Feeding_placesO relation is filled with sample data. The

only way to accomplish this task is to use the INSERT command that

uses a subquery that selects a reference value to the appropriate

(related) row object of the PersonsR relation.

INSERT INTO Feeding_placesO

SELECT 'TIGER',REF(P) FROM PersonsR P WHERE P.name='JAN';

INSERT INTO Feeding_placesO

SELECT 'LOLA',REF(P) FROM PersonsR P WHERE P.name='JAN';

INSERT INTO Feeding_placesO

SELECT 'BOLEK',REF(p) FROM PersonsR P WHERE P.name='SOPHIE';

INSERT INTO Feeding_placesO

SELECT 'SMALL',REF(P) FROM PersonsR P WHERE P.name='ADAM';

1 rows inserted.

1 rows inserted.

1 rows inserted.

1 rows inserted.

Task. Display cat nicknames and names and details about their hosts.

SELECT nickname "Cat", F.owner.name "Host",

 SUBSTR(F.owner.Data(),1,20) "Host data"

FROM Feeding_placesO F;

Cat Host Host data

--------------- --------------- --------------------

LOLA JAN JAN, FIELD street 2

TIGER JAN JAN, FIELD street 2

BOLEK SOPHIE SOPHIE, LONG street

SMALL ADAM ADAM, WET street 21

In the above command, reference was made directly to the fields and

methods indicated by the reference (field name and method Data()).

This option exists only for SQL. In PL/SQL, in this case, the DEREF

function should be used to process the reference to the object, which is

Oracle database – programming Zbigniew Staszak

153

a parameter of the function. The above query, collecting the data of

the Tiger's host (in PL/SQL, the SELECT ... INTO command can

return only one row), would have there the shape:

SELECT nickname, DEREF(F.owner).name DEREF(F.owner).Data()

INTO ni,na,da

FROM Feeding_placesO F

WHERE nickname='TIGER';

where ni, na and da are the variables to which the returned values

will be assigned.

The transformation opposite to DEREF is performed by the REF

function.

The following is the use of the DEREF function to display the feeding

place data of the cat nicknamed 'SMALL'.

SELECT DEREF(owner) "Host"

FROM Feeding_placesO

WHERE nickname='SMALL';

Host

Z.PERSON('ADAM',Z.ADDRESS('WET',21))

Although the query only works on the Feeding_placesO relation,

however, in the examples above, in the background, relation

Feeding_placesO was joined with the PersonsR relation, without

specifying of join criteria. Therefore, neither the name of the related

object relation nor the join condition is needed here to reach the values

stored in this relation.

The object version of the task solution using the relation with row

object:

The solution is to define the relation Feeding_placesRO with row

object FEEDING_PLACERO type containing a field specifying the

nickname of the cat and a field specifying the owner of feeding place

being the reference to the PERSON type.

Oracle database – programming Zbigniew Staszak

154

CREATE TYPE FEEDING_PLACERO AS OBJECT -- cats with reference

 -- to feeding places

(nickname VARCHAR2(15),

 owner REF PERSON);

TYPE FEEDING_PLACERO compiled

CREATE TABLE Feeding_placesRO OF FEEDING_PLACERO

(owner SCOPE IS PersonsR,

 CONSTRAINT fpr_pk PRIMARY KEY (nickname),

 CONSTRAINT fpr_ca_fk FOREIGN KEY (nickname)

 REFERENCES Cats(nickname));

table FEEDING_PLACESRO created.

As previously mentioned, in relations using row objects, object

constraints are determined not as part of the object type definition but

only as part of the definition of relation with row type object. In the

above case, this applies to the indication, through the SCOPE IS

clause, of the relation of PersonsR as the relation, to objects of

which is occurs reference. This also applies to the definition of

primary key of the Feeding_placesRO relation being the field of

object, as well as the definition of the foreign key referencing to Cats

relation, which key is also the field of object. The latter, due to the

already existing relation Cats, was defined in a relational way.

Data for the Feeding_placesRO relation can be entered in exactly

the same way as it was done for the Feeding_placesO relation. The

same shape also has a query returning the data of cats and the data of

their feeding place. Also, handling this relation in PL/SQL, just like it

was for the Feeding_placesO relation, would require the eventual

use of the DEREF and REF functions.

Deleting a related object may result in the creation of so-called

"dangling" reference in the object in which this reference was defined.

Such references can be identified by using the IS DANGLING

operator (the reverse operator is IS NOT DANGLING).

Oracle database – programming Zbigniew Staszak

155

Task. Check if there are "dangling" references to the object of

PERSON type in the Feeding_placesO relation.

SELECT nickname FROM Feeding_placesO

WHERE owner IS DANGLING;

NICKNAME

DELETE FROM PersonsR WHERE name='ADAM';

1 rows deleted.

SELECT nickname FROM Feeding_placesO

WHERE owner IS DANGLING;

NICKNAME

SMALL

ROLLBACK;

rollback complete.

Information about object types can be found in the USER_OBJECTS

system view and information about the methods of object types in the

USER_METHOD_PARAMS, USER_METHOD_RESOULTS and

USER_TYPE_METHODS system views.

4.2. Object views

Object views are used to adapt the existing relational database to use

the mechanisms provided by the object extension of the Oracle

database. These views give the opportunity to impose object structures

such as object data types and methods on existing relational tables.

Object views can have attributes of object type (then they will be

views with column objects) or consist of rows that are objects of a

particular type (then they will be views with row objects). In both

cases, they will download data from existing relational tables. A

relational database, thanks to object views, can therefore be seen as an

object-relational database.

Oracle database – programming Zbigniew Staszak

156

Task. Create the Feeding_places1 relation as a standard relational

table and then, by defining object views, allow to use object

mechanisms for it.

CREATE TABLE Feeding_places1

(nickname VARCHAR2(15) CONSTRAINT fp1_pk PRIMARY KEY

 CONSTRAINT fp1_ca_fk REFERENCES Cats(nickname),

 name VARCHAR2(15),

 street VARCHAR2(25),

 house_number NUMBER(2));

table FEEDING_PLACES1 created.

INSERT INTO Feeding_places1 VALUES('TIGER','JAN','FIELD',2);

INSERT INTO Feeding_places1 VALUES('LOLA','JAN','FIELD',2);

INSERT INTO Feeding_places1 VALUES('BOLEK','SOPHIE','LONG',7);

INSERT INTO Feeding_places1 VALUES('SMALL','ADAM','WET',21);

1 rows inserted.

1 rows inserted.

1 rows inserted.

1 rows inserted.

CREATE OR REPLACE VIEW Feeding_placesov (nickname,owner) AS

SELECT nickname,PERSON(name,ADDRESS(street,house_number))

FROM Feeding_places1;

view FEEDING_PLACESOV created.

For defined in such a way object view Feeding_places1, with a

column object of the type PERSON, all queries presented for the

previously defined Feeding_places relation apply. So one can also

use here the methods defined for the PERSON type. As an example, the

bellow task will be performed:

Task. Display nicknames of cats along with data of their feeding

places.

SELECT nickname "Cat",SUBSTR(F.owner.Data(),1,45)

 "Feeding place"

FROM Feeding_placesov F

ORDER BY owner;

Cat Feeding place

--------------- ---

SMALL ADAM, WET street 21

TIGER JAN, FIELD street 2

LOLA JAN, FIELD street 2

BOLEK SOPHIE, LONG street 7

Oracle database – programming Zbigniew Staszak

157

At the object view level, one can also use reference types to model

reference relationships, that exist in a relational database

(unfortunately, this does not apply to references the relation with

itself). Below, a relationship mapping the reference relationship of

Feeding_places1 relation with Cats relation will be modeled

(Feeding_placesov view does not include such a connection). To

make this possible, using the object perspective, one must define OID

identifiers for the rows of the Cats relation, downloaded by this view.

The view that accomplishes this task must contain rows of the type

consistent with the row type of Cats relation, so it must consist of row

objects of this type. It is therefore necessary to first define the abstract

type with a structure consistent with the scheme of Cats relation. This

definition is provided below. The new type was equipped additionally

with two methods, one returning the name of the cat's gender

(About_gender method), the other returning the full monthly mice

ration of the cat (the Mice_income method).

CREATE OR REPLACE TYPE CAT_TYPE AS OBJECT

(name VARCHAR2(15),

 gender VARCHAR2(1),

 nickname VARCHAR2(15),

 function VARCHAR2(10),

 chief VARCHAR2(15),

 in_herd_since DATE,

 mice_ration NUMBER(3),mice_extra NUMBER(3),

 band_no NUMBER(2),

 MEMBER FUNCTION About_gender RETURN VARCHAR2,

 MEMBER FUNCTION Mice_income RETURN NUMBER);

CREATE OR REPLACE TYPE BODY CAT_TYPE AS

 MEMBER FUNCTION About_gender RETURN VARCHAR2 IS

 BEGIN

 RETURN CASE NVL(gender,'U')

 WHEN 'M' THEN 'Male cat'

 WHEN 'W' THEN 'Female cat'

 WHEN 'A' THEN 'Unknown'

 ELSE 'Wrong'

 END;

 END;

 MEMBER FUNCTION Mice_income RETURN NUMBER IS

 BEGIN

 RETURN NVL(mice_ration,0)+NVL(mice_extra,0);

 END;

END;

TYPE BODY CATS_TYPE compiled

Oracle database – programming Zbigniew Staszak

158

In the next step, one must define an object view based on the

CAT_TYPE type (with a row object of this type), which downloads data

from the Cats relation, with assigning the OID identifiers to the rows

that are downloaded.

CREATE OR REPLACE VIEW Cats_with_oid OF CAT_TYPE

WITH OBJECT IDENTIFIER (nickname) AS

SELECT name,gender,nickname,function,chief,

 in_herd_since,mice_ration,mice_extra,

 band_no

FROM Cats;

view CATS_WITH_OID created.

The OF keyword is followed by the type name, which specifies the

type of view row. The WITH OBJECT IDENTIFIER clause specifies

the attribute (or list of attributes) used as the basis for the OID

identifier (usually it is the primary key of the relation on which the

view is based). The view is built on the basis of data downloaded from

the Cats relation, whose structure (SELECT clause) is consistent with

the structure of the type CAT_TYPE.

The Feeding_places1 relation must refer to the OID identifiers of

the rows of Cats relations, downloaded by the Cats_with_oid view.

Therefore, on the basis of Feeding_places1 relation, an object view

should be created that implements such references. To define the

reference, the MAKE_REF function will be used with arguments: the

name of the object being referenced and the name of the attribute (or

their list) creating a foreign key (implementing the modeled

relationship at the relational level) in the relation that is the basis of

the view.

CREATE OR REPLACE VIEW Feeding_places_with_oid AS

SELECT MAKE_REF(Cats_with_oid,nickname) nickname,

 name,street,house_number

FROM Feeding_places1;

view FEEDING_PLACES_WITH_OID created.

Oracle database – programming Zbigniew Staszak

159

The above view is a view with a column object (contains a nickname

field that is a reference to an object of the type CAT_TYPE). If any

other relation were related by reference with the Feeding_places1

relation (it had a foreign key coming from Feeding_places1

relation), then to the rows Feeding_places1 relation should also be

assigned OID identifier. Therefore, it would be necessary to define a

type compatible to the Feeding_places1 relation schema (e.g.

named FEEDING_PLACE1_TYPE), within which there would be a

reference type field (REF) to the type compatible to schema of the

related Cats relation, i.e. the type CAT_TYPE. This field would

correspond to the foreign key of this relation. Because the attribute

pseudo in the Feeding_places1 relation plays both the role of the

primary and foreign key and the reference cannot be the basis of the

OID identifier, should be added to the type FEEDING_PLACE1_TYPE

the attribute nickname_id of the type which corresponds to the type

of the attribute nickname of this relation. This additional attribute will

contain the values of the Feeding_places1 relation nickname

attribute. As it has a simple type and containing unique values, will be

the basis for the OID identifier. This procedure is not necessary if the

foreign key does not also play the role of the primary key. The

FEEDING_PLACE1_TYPE type definition would be:

CREATE OR REPLACE TYPE FEEDING_PLACE1_TYPE AS OBJECT

(nickname_id VARCHAR2(15),

 nickname REF CAT_TYPE

 name VARCHAR2(15),

 street VARCHAR2(25),

 house_number NUMBER(2));

TYPE FEEDING_PLACE1_TYPE compiled

Next, instead of the Feeding_places_with_oid view, one should

define a view with a FEEDING_PLACE1_TYPE type row object with the

WITH OBJECT IDENTIFIER clause, indicating the attribute used to

build the OID (in this case nickname_id). So the perspective would

be defined as follows:

Oracle database – programming Zbigniew Staszak

160

CREATE OR REPLACE VIEW Feeding_places1_with_oid OF

FEEDING_PLACE1_TYPE

WITH OBJECT IDENTIFIER (nickname_id) AS

SELECT nickname nickname_id,

 MAKE_REF(Cats_with_oid,nickname) nickname,

 name,street,house_number

FROM Feeding_places1;

view FEEDING_PLACES1_WITH_OID created.

As the solution to the task below shows, queries to object views

containing references have the same structure as queries to relations

containing references. Also, as in that case, the solution in PL/SQL

language to the following task will require the use of the DEREF

function to process the reference to the object, which is a parameter of

the function.

Task. Display nicknames, genders and addresses of cats with feeding

place at Jan's.

SELECT FPOID.nickname.nickname "Cat",

 SUBSTR(FPOID.nickname.About_gender(),1,12) "Gender",

 SUBSTR(street||' '||house_number,1,20) "Address"

FROM Feeding_places_with_oid FPOID

WHERE name='JAN';

Cat Gender Address

--------------- ------------ --------------------

TIGER Male cat FIELD 2

LOLA Female cat FIELD 2

In the solution of the above task, equivalently one can use the

Feeding_places1_with_oid view.

For object views, the INSTEAD OF triggers discussed earlier can be

fully used. With object view, one can create object types and use them

at the same time with existing relational tables. Object type methods

can be used for both data from relational tables and data from tables

containing objects. Therefore, object views give the opportunity,

depending on the needs, to treat the database as relational or as object-

relational.

Oracle database – programming Zbigniew Staszak

161

4.3. Object-oriented PL/SQL language

In the classic relational database, queries within PL/SQL blocks had

pure SQL syntax, and PL/SQL commands supported the structural

programming paradigm. The ability to define abstract types together

with methods, which types can inherit from each other, forces changes

in the syntax of SQL and PL/SQL commands. In addition, the ability

to define object views allows one to treat relational databases in the

same way as these object-oriented. These changes cause the PL/SQL

language to receive a new quality called the PL/SQL object language.

Task. Define an anonymous block displaying the total mice rations of

female cats. Use the previously defined abstract type CAT_TYPE and

the object view Cats_with_oid.

DECLARE

 cat CAT_TYPE;

 CURSOR mice_of_ladies IS

 SELECT VALUE(CO)

 FROM Cats_with_oid CO

 WHERE CO.About_gender()='Female cat';

BEGIN

 DBMS_OUTPUT.PUT_LINE('Nick of female cat Salary');

 DBMS_OUTPUT.PUT_LINE('----------------------------');

 OPEN mice_of_ladies;

 LOOP

 FETCH mice_of_ladies INTO cat;

 EXIT WHEN mice_of_ladies%NOTFOUND;

 DBMS_OUTPUT.PUT_LINE(RPAD(cat.nickname,21,' ')||' '||

 cat.Mice_income());

 END LOOP;

 CLOSE mice_of_ladies;

END;

anonymous block completed

Nick of female cat Salary

LOLA 72

FLUFFY 55

EAR 40

FAST 65

LITTLE 64

HEN 61

MISS 52

LADY 51

Oracle database – programming Zbigniew Staszak

162

The VALUE function is used to download data with the structure of

an abstract data type. In the above case, the CAT_TYPE type object is

returned from the Cats_with_oid view which is built of row objects

of this type. In solving the above task, methods named

About_gender and Mice_income were used, defined for the

CAT_TYPE type.

Task. Define an anonymous block that adds a new cat to the herd.

After inserting a new member of the herd, add 5 additional mice to

cats with a total mice ration less than the average total mice ration for

the whole herd. Use the object view Cats_with_oid for this purpose.

DECLARE

 cat CAT_TYPE:=CAT_TYPE('RYCHO','M','FAT','CAT',

 'TIGER','2020-02-09',50,NULL,1);

 k CAT_TYPE;

 ma Functions.max_mice%TYPE;

 mi Functions.min_mice%TYPE;

 i NUMBER;

 existing_nickname EXCEPTION;

 out_of_ration EXCEPTION;

BEGIN

 SELECT COUNT(*) INTO i FROM Cats_with_oid

 WHERE nickname=cat.nickname;

 IF i>0 THEN RAISE existing_nickname;

 END IF;

 SELECT max_mice,min_mice INTO ma,mi

 FROM Functions

 WHERE function=cat.function;

-- above, the relation not the object view was used

-- because this view has not been defined for this relation

 IF cat.mice_ration BETWEEN mi AND ma

 THEN INSERT INTO Cats_with_oid VALUES (cat);

 ELSE RAISE out_of_ration;

 END IF;

 SELECT AVG(CO.Mice_income()) INTO i

 FROM Cats_with_oid CO;

 FOR kitten IN (SELECT VALUE(CC) ko

 FROM Cats_with_oid CC)

 LOOP

 k:=kitten.ko;

 IF k.Mice_income()<i

 THEN UPDATE Cats_with_oid

 SET mice_extra=NVL(mice_extra,0)+5

 WHERE nickname=k.nickname;

 END IF;

Oracle database – programming Zbigniew Staszak

163

 END LOOP;

EXCEPTION

 WHEN existing_nickname

 THEN DBMS_OUTPUT.PUT_LINE('Nickname already exists!!!');

 WHEN NO_DATA_FOUND

 THEN DBMS_OUTPUT.PUT_LINE('Wrong function!!!');

 WHEN out_of_ration

 THEN DBMS_OUTPUT.PUT_LINE('Mice out of ration!!!');

 WHEN OTHERS THEN DBMS_OUTPUT.PUT_LINE(SQLERRM);

END;

anonymous block completed

In the above solution, the code fragment:

 SELECT AVG(CO.Mice_income()) INTO i

 FROM Cats_with_oid CO;

 FOR kitten IN (SELECT VALUE(CC) ko

 FROM Cats_with_oid CC)

 LOOP

 k:=kitten.ko;

 IF k.Mice_income()<i

 THEN UPDATE Cats_with_oid

 SET mice_extra=NVL(mice_extra,0)+5

 WHERE nickname=k.nickname;

 END IF;

 END LOOP;

can be replaced with:

UPDATE Cats_with_oid K

SET mice_extra=NVL(mice_extra,0)+5

WHERE K.Mice_income()<(SELECT AVG(CC.Mice_income())

 FROM Cats_with_oid CC);

The longer fragment of code was placed to illustrate the use of the

explicit cursor to handle relational database data through the object

view and to illustrate the use of the method defined within the abstract

type CAT_TYPE, which is the object view basis (the view consists of

rows of this type). In solving the above task, the default constructor

for the CATS_TYPE type and its method called Mice_income was

used. As the solutions of the above tasks show, by creating for a

relation an abstract type, one can simultaneously extend support of the

relation to methods defined within this type. This applies to both SQL

and PL/SQL.

Oracle database – programming Zbigniew Staszak

164

Task. Display nicknames of cats performing the 'CAT' function, their

genders and the values of total mice rations, taking into account the

modifications made in the previous task.

SELECT nickname "Nickname",

 SUBSTR(C.About_gender(),1,14) "Gender",

 SUBSTR(C.Mice_income(),1,14) "Mice income"

FROM Cats_with_oid C

WHERE function='CAT';

Nickname Gender Mice income

--------------- -------------- --------------

FAT Male cat 55

ZERO Male cat 48

EAR Female cat 45

SMALL Male cat 45

ROLLBACK;

rollback complete.

4.4. Nested tables and variable size arrays

Nested tables and variable size tables are the second and third type of

collections discussed in this lecture. They are part of the object

extension of Oracle database , so they are presented after the fragment

of material related to this extension. Earlier, the first type of collection

was presented, i.e. index tables.

4.4.1. Nested tables

Nested tables are available since Oracle 8 version. Their name is

associated with the fact that the type of this table can be a type of

relation attribute, so it can be nested in another table.

The nested table type is defined according to the syntax:

TYPE type_name AS TABLE OF table_element_type [NOT NULL]

Oracle database – programming Zbigniew Staszak

165

The absence of an INDEX BY BINARY_INTEGER clause which is a

feature of the index table, in the definition indicates a nested table.

The element type of a nested table can be any scalar type (except the

types: BOOLEAN, NCHAR, NCLOB, NVARCHAR2 and REF

CURSOR), as well as any object type. Access to the element of a

nested table is obtained in a similar way to access to an index table

element.

Nested tables gain additional features in comparison to index tables,

i.e.

• they can be modified with SQL commands and saved in the

database as values of relation attributes (nested table in the table -

hence the name),

• negative index values are not available for them and the indexes

must be sequential,

• they can be completely indeterminate (NULL). This can be

checked using the IS NULL operator,

• additional attributes (methods) have been defined for them:

− EXTEND, EXTEND(n), EXTEND(n, m) – respectively,

appends an indeterminate (NULL) row with the index LAST+1,

attaches n empty rows at the end of the table, copies the

element with the index n, m times at the end of the table,

− TRIM, TRIM (n) – respectively, deletes the last row of the

table, deletes the last n rows of the table (if n> COUNT then the

SUBSCRIPT_BEYOND_COUNT exception appears).

The table nested immediately after the declaration is indeterminate

(NULL) and requires initialization (construction). Assigning a value

to an uninitialized table causes the exception ORA-6531

COLLECTION_IS_NULL.

A constructor with the same name as the type name is used to

initialize the nested table. The following is an example definition of a

nested table type and declarations of several variables of this type

along with their initialization.

Oracle database – programming Zbigniew Staszak

166

TYPE TABLE_OF_NUMBERS IS TABLE OF NUMBER;

tl1 TABLE_OF_NUMBERS:= TABLE_OF_NUMBERS(7);

tl2 TABLE_OF_NUMBERS:= TABLE_OF_NUMBERS(3,4,9);

tl3 TABLE_OF_NUMBERS:= TABLE_OF_NUMBERS();

During initialization, table items are indexed from 1 to an index equal

to the number of items initialized. The tl3 variable is a nested array

containing no elements but already specified (NOT NULL). To

enlarge the table size beyond that resulting from initialization, one

should use the EXTEND attribute (method). Without this, attempting

to assign a value to a table element outside of the index range will

result in exception ORA-6533 SUBSCRIPT_BEYOND_COUNT.

Nested tables as relation attributes

In order for the nested table type to be used as the attribute type of a

relation created using the CREATE TABLE command, one must first

define the type corresponding to this nested table using the CREATE

TYPE command. As part of the CREATE TABLE command, only the

type saved in the database dictionary can be used, and the CREATE

TYPE command makes it available as one of the possible attribute

types.

Task. Tiger decided to record all offenses of cats, remembering their

date and description. For this purpose, he ordered to define a relation

whose attributes would be the cat's nickname and a nested table

containing all the offenses of that cat. Define such a relation.

CREATE OR REPLACE TYPE OFFENSE_OF_CAT AS OBJECT

(offense_date DATE,

 offense_desc VARCHAR2(50));

TYPE OFFENSE_OF_CAT compiled

CREATE OR REPLACE TYPE LIST_OF_OFFENSES

AS TABLE OF OFFENSE_OF_CAT;

TYPE LIST_OF_OFFENSES compiled

CREATE TABLE Offenses

(nickname VARCHAR2(15) PRIMARY KEY REFERENCES Cats(nickname),

 about_offenses LIST_OF_OFFENSES)

NESTED TABLE about_offenses STORE AS Varehouse_of_offenses;

table OFFENSES created.

Oracle database – programming Zbigniew Staszak

167

The NESTED TABLE clause is mandatory. Varehouse_of_offenses

specifies the name of, generated by the system, the so-called a storage

table, used to store actual nested table data. The about_offenses

attribute is a reference to this table. To the storage table user has no

direct access, although its description is in the USER_TABLES view.

If one try to modify it, one will receive error ORA-22812. The

modification of the storage table can be done by DML commands

working on the relation whose attribute is this table.

It is worth noting that the use in relations of array type attributes

violates the principles of building relational databases (omits

referential relationships), however, it better reflects the structure of

real data and significantly speeds up access to data (costly operation

of relations joining is omitted).

Operations on relations with nested tables

Relations with nested tables can be read and modified both in pure

SQL and as part of PL/SQL. However, the method of performing such

operations may be different.

Task. Insert two rows to the Offenses relation, one using pure SQL

and the other using the PL/SQL block.

INSERT INTO Offenses VALUES

('FAST',

 LIST_OF_OFFENSES(OFFENSE_OF_CAT('2011-01-03',

 'TOO AGGRESSIVELY DEMANDED PRIZE'),

 OFFENSE_OF_CAT('2011-01-04',

 'DISCUSSION DUE TO NO PRIZE')));

DECLARE

-- initialization of the nested table

 the_first_offense LIST_OF_OFFENSES:=

 LIST_OF_OFFENSES(OFFENSE_OF_CAT('2011-01-01',

 'EATING OF HUNTED MOUSE'));

BEGIN

 INSERT INTO Offenses VALUES('ZERO',the_first_offense);

END;

anonymous block completed

Oracle database – programming Zbigniew Staszak

168

Task. Assuming that the cat with the nickname 'ZERO' was already

noted, modify Offenses relation by adding to him a new one offense.

The task should be performed using pure SQL and using the PL/SQL

block.

INSERT INTO TABLE(SELECT about_offenses

 FROM Offenses

 WHERE nickname='ZERO')

VALUES(OFFENSE_OF_CAT('2011-01-10','EATING OF HUNTED MOUSE'));

1 rows inserted.

ROLLBACK;

rollback complete.

DECLARE

 table_of_offenses Offenses.about_offenses%TYPE;

 new_offense OFFENSE_OF_CAT:=

 OFFENSE_OF_CAT('2011-01-10',

 'EATING OF HUNTED MOUSE');

BEGIN

 SELECT about_offenses INTO table_of_offenses

 FROM Offenses WHERE nickname='ZERO';

 table_of_offenses.EXTEND;

 table_of_offenses(table_of_offenses.COUNT):=new_offense;

 UPDATE Offenses

 SET about_offenses=table_of_offenses

 WHERE nickname='ZERO';

END;

anonymous block completed

In the above solution, for pure SQL, the TABLE operator is used,

which is available only for SQL language, returns the nested table

downloaded using a subquery (the THE operator does the same,

however Oracle recommends using the TABLE operator). The table

downloaded in this way can be modified with DML commands. The

solution for PL/SQL, due to the lack of access to the TABLE operator,

is different. First, the nested table for the cat nickname 'ZERO' is

downloaded, then, using the EXTEND method, table obtains a new

row, which receives value of the new offense. The last step is to

modify the Offenses relation for the 'ZERO' cat, where its entire

offense table is overwritten.

Oracle database – programming Zbigniew Staszak

169

Task. Display the offenses of a specified cat. The task should be

performed using pure SQL and using the PL/SQL block.

SELECT nickname "Culprit",offense_date "Date",

 offense_desc "Offense"

FROM Offenses O,

 TABLE(SELECT about_offenses

 FROM Offenses WHERE nickname='&nickname')

WHERE O.nickname='ZERO';

NICKNAME – ZERO

Culprit Date Offense

--------------- ------------------ ---------------------------

ZERO 2011-01-01 EATING OF HUNTED MOUSE

ZERO 2011-01-10 EATING OF HUNTED MOUSE

DECLARE

 table_of_offenses Offenses.about_offenses%TYPE;

 o Offenses.nickname%TYPE:='&nickname';

BEGIN

 SELECT about_offenses INTO table_of_offenses FROM Offenses

 WHERE nickname=o;

 DBMS_OUTPUT.PUT_LINE

 ('Offenses of the cat with the nickname '||o);

 FOR i IN 1..table_of_offenses.COUNT

 LOOP

 DBMS_OUTPUT.PUT(table_of_offenses(i).offense_date);

 DBMS_OUTPUT.PUT_LINE

 (' '||table_of_offenses(i).offense_desc);

 END LOOP;

EXCEPTION

 WHEN NO_DATA_FOUND THEN DBMS_OUTPUT.PUT_LINE

 ('Wrong nickname');

END;

NICKNAME – ZERO

Offenses of the cat with the nickname ZERO

2011-01-01 EATING OF HUNTED MOUSE

2011-01-10 EATING OF HUNTED MOUSE

Assigning a nested table to a PL/SQL variable causes allocating for its

indexes from 1 to COUNT.

Oracle database – programming Zbigniew Staszak

170

4.4.2 Tables of variable size

Tables of variable size are available since Oracle 8 version and are

similar to tables of C language. They are defined according to the

syntax:

TYPE type_name AS {VARRAY | VARYING ARRAY} (size)

 OF table_element_type [NOT NULL];

Type of table element cannot be BOOLEAN, NCHAR, NCLOB,

NVARCHAR2, REF CURSOR (collections are available as of Oracle

9i version). Access to the element of a variable size table is obtained

in a similar way to access to element of an index table and nested

table.

Tables of variable size have additional features compared to nested

tables. Those are:

• maximum size specified,

• stored in the database retain the way of ordering and index

values,

• in the database they are stored in the same area as the relation

with attribute of this type (in the CREATE TABLE there is no

NESTED TABLE clause),

• one cannot use the TRIM attribute (method) to delete their items,

• an additional attribute (method) is defined for them: LIMIT -

returns the maximum size of the array.

Similarly to nested tables, tables of variable size should be initialized

and the addition of another element within PL/SQL involves using the

EXTEND method.

Tables of variable size as relation attributes

Tables of variable size, similarly like nested tables, can be a type of

relation attribute, but there is no way within SQL to modify their

elements (the TABLE and THE operators mentioned above).

Therefore, they should always be treated as a whole (any modification

requires their overwriting).

Oracle database – programming Zbigniew Staszak

171

Task. Define an anonymous block that will allow to remember cats

offences in a relation whose attributes will be the cat's nickname and

the list of offenses being a table of variable size.

CREATE OR REPLACE TYPE LIST_OF_OFFENSES1

AS VARRAY(20) OF OFFENSE_OF_CAT;

TYPE LIST_OF_OFFENSES1 compiled

CREATE TABLE Offenses1

(nickname VARCHAR2(15)PRIMARY KEY REFERENCES Cats(nickname),

 about_offenses LIST_OF_OFFENSES1);

table OFFENSES1 created.

DECLARE

 table_of_offenses LIST_OF_OFFENSES1:=LIST_OF_OFFENSES1();

 o Offenses1.nickname%TYPE:='&nickname_of_cat';

 new_offense

OFFENSE_OF_CAT:=OFFENSE_OF_CAT('&date_of_offense',

 '&description_of_offense');

 np NUMBER;

BEGIN

 SELECT COUNT(*) INTO np FROM Cats WHERE nickname=o;

 IF np=0 THEN

 RAISE_APPLICATION_ERROR(-20101,'Wrong nickname');

 END IF;

 SELECT COUNT(*) INTO np FROM Offenses1 WHERE nickname=o;

 IF np=0 THEN

 table_of_offenses.EXTEND;

 table_of_offenses(1):=new_offense;

 INSERT INTO Offenses1 VALUES (o,table_of_offenses);

 ELSE

 SELECT about_offenses INTO table_of_offenses

 FROM Offenses1 WHERE nickname=o;

 IF table_of_offenses.COUNT=table_of_offenses.LIMIT THEN

 RAISE_APPLICATION_ERROR

 (-20102,'Fxhausted limit of offenses');

 END IF;

 table_of_offenses.EXTEND;

 table_of_offenses(table_of_offenses.COUNT):=new_offense;

 UPDATE Offenses1 SET about_offenses=table_of_offenses

 WHERE nickname=o;

 END IF;

END;

Oracle database – programming Zbigniew Staszak

172

NICKNAME_OF_CAT – LOLA

DATE_OF_OFFENSE – 2020-03-01

DESCRIPTION_OF_OFFENSE - SHE DID NOT ACCEPT THE GIFT FROM

 THE CHIEF

anonymous block completed

NICKNAME_OF_CAT – LOLA

DATE_OF_OFFENSE – 2020-03-02

DESCRIPTION_OF_OFFENSE - SHE DID NOT APPEAR ON THE CHIEF CALL

anonymous block completed

Although elements of tables of variable cannot be modified using

DML commands, one can formulate queries to them, in the same way

as queries to nested tables, using the TABLE operator.

Task. Display the offenses of the cat with the nickname 'LOLA', saved

as a table of variable size in the relation Offenses1.

SELECT nickname "Culprit",offense_date "Data",

 offense_desc "Vice"

FROM Offenses1 O1,TABLE(SELECT about_offenses

 FROM Offenses1 WHERE nickname='LOLA')

WHERE O1.nickname='LOLA';

Culprit Data Vice

---------- ------------- ---

LOLA 2020-03-01 SHE DID NOT ACCEPT THE GIFT FROM THE CHIEF
LOLA 2020-03-02 HE DID NOT APPEAR ON THE CHIEF CALL

Oracle database – programming Zbigniew Staszak

173

5. Bulk binding

The PL/SQL code is executed by the PL/SQL machine on the server

or client side. However, regardless of on which side the block is being

executed, the always contained therein "clean" SQL commands are

sent to the executor of those commands, which is located in the

DBMS. The resulting data is then sent back to the PL/SQL machine.

This transfer process, called context switching, decrease the

performance of the code being executed. This performance especially

decreases when the DML command is executed within a loop (the

number of context switching equals the number of loop circuits). The

way to solve this problem is to use the so-called bulk binding

(introduced since Oracle 8i version) consisting of inserting data

modifying the database into the collection, and then sending the entire

collection to the SQL machine, which performs modification. This

reduces the number of context switching to once.

Bulk DML commands are implemented using the FORALL command

with the following syntax:

FORALL collection_index IN begining_index .. final_index

[SAVE EXCEPTION]

DML_command;

where index is of type collection index, begining_index and

final_index are the number of the first and last item of the collection,

respectively. A collection item with the index collection_index is part

of the DML command body (defines a new attribute value). In one

switch of context, all data is updated in a bulk way using the contents

of the collection. The SAVE EXCEPTION clause, introduced since

Oracle 9i version, allows handling errors at the collection line level

(new exception ORA-2481: error(s) in array DML). It writes errors to

the implicit cursor attribute SQL% BULK_EXCEPTION, and then

allows the FORALL statement to continue processing the remaining

lines. This attribute resembles a PL/SQL table built of records

containing error_index and error_code fields indicating the error line

number and error code, respectively (the error description is returned

by SQLERRM(-SQL%BULK_EXCEPTIONS(i).error_code)) function.

As a table, it has the already known COUNT attribute.

Oracle database – programming Zbigniew Staszak

174

Task. Tiger come to the conclusion that his secret account created to

fight the conspiracy could also be used to privately supplement his

state. Enable the Tiger to enter any number of mice into its secret

account.

CREATE OR REPLACE

PROCEDURE for_tiger(nm NUMBER) AS

 TYPE td IS TABLE OF DATE INDEX BY BINARY_INTEGER;

 m td;

 ne NUMBER;

 wrong_number_of_mice EXCEPTION;

BEGIN

 IF nm<=0 THEN RAISE wrong_number_of_mice; END IF;

 FOR i IN 1..nm

 LOOP

 m(i):=SYSDATE;

 END LOOP;

 FORALL i IN 1..nm SAVE EXCEPTIONS

 INSERT INTO Tiger(entry_date) VALUES (m(i));

EXCEPTION

 WHEN wrong_number_of_mice THEN NULL;

 WHEN OTHERS THEN

 DBMS_OUTPUT.PUT_LINE

 ('An exception occurred: '||SQLERRM);

 ne:=SQL%BULK_EXCEPTIONS.COUNT;

 FOR i IN 1..ne

 LOOP

 DBMS_OUTPUT.PUT_LINE('Error '||i||': mouse '||

 SQL%BULK_EXCEPTIONS(i).error_index||' - '||

 SQLERRM(-SQL%BULK_EXCEPTIONS(i).error_code));

 END LOOP;

END for_tiger;

PROCEDURE for_tiger compiled

EXEC for_tiger(7);

anonymous block completed

SELECT COUNT(*)-COUNT(release_date) "On account"

FROM Tiger;

On account

7

ROLLBACK;
rollback complete.

Oracle database – programming Zbigniew Staszak

175

Task. The fight against conspiracy required strict control over the

state of the mice in the warehouse, hence it became necessary to

monitor each change in the ration of mice and ration extra. Write a

COMPOUND trigger, which in bulk way saves data of changes of

these rations (who, to whom, when, what operation, value before

change, value after change) in the Changes_of_rations relation.

CREATE TABLE Changes_of_rations

(who VARCHAR2(15),

 whom VARCHAR2(15),

 when_ch DATE,

 operation VARCHAR2(6),

 ration_old NUMBER(3),

 ration_new NUMBER(3),

 extra_old NUMBER(3),

 extra_new NUMBER(3));

table CHANGES_OF_RATIONS created.

CREATE OR REPLACE TRIGGER Mice_control

FOR INSERT OR UPDATE OF mice_ration, mice_extra

ON Cats

COMPOUND TRIGGER

 TYPE changes_t IS TABLE OF Changes_of_rations%ROWTYPE

 INDEX BY SIMPLE_INTEGER;

 rhz changes_t;

 ind SIMPLE_INTEGER := 0;

 nmax CONSTANT SIMPLE_INTEGER := 1000;

 PROCEDURE write_changes

 IS

 lwpis CONSTANT SIMPLE_INTEGER := rhz.COUNT();

 BEGIN

 FORALL nr IN 1..lwpis

 INSERT INTO Changes_of_rations VALUES rhz(nr);

 rhz.delete();

 ind := 0;

 END write_changes;

 AFTER EACH ROW

 IS

 BEGIN

 ind := ind + 1;

 rhz(ind).who:=SYS_CONTEXT('USERENV', 'SESSION_USER');

 rhz(ind).whom := :NEW.nickname;

 rhz(ind).when_ch := SYSDATE;

 rhz(ind).ration_new := :NEW.mice_ration;

 rhz(ind).extra_new := :NEW.mice_extra;

Oracle database – programming Zbigniew Staszak

176

 IF INSERTING THEN

 rhz(ind).operation := 'INSERT';

 rhz(ind).ration_old := NULL;

 rhz(ind).extra_old := NULL;

 ELSE

 rhz(ind).operation := 'UPDATE';

 rhz(ind).ration_old := :OLD.mice_ration;

 rhz(ind).extra_old := :OLD.mice_extra;

 END IF;

 IF ind >= nmax THEN

 write_changes();

 END IF;

 END AFTER EACH ROW;

 AFTER STATEMENT

 IS

 BEGIN

 write_changes();

 END AFTER STATEMENT;

END Mice_control;

TRIGGER Mice_control compiled

INSERT INTO Cats

VALUES('RYCHO','M','FAT','HONORARY','TIGER','2020-05-

09',10,2,1);

INSERT INTO Cats

VALUES('SOPHIE','W','SKINNY','HONORARY','TIGER','2020-05-

10',5,NULL,1)

1 rows inserted.

1 rows inserted.

UPDATE Cats

SET mice_ration=20,

 mice_extra=5

WHERE nickname<>'TIGER';

19 rows updated.

Oracle database – programming Zbigniew Staszak

177

SELECT * FROM Changes_of_rations;

WHO WHOM WHEN_CH OPERATION RATION_OLD RATION_NEW EXTRA_OLD EXTRA_NEW

----- ---------- --------------- ---------- ------------ ------------ ------------ -----------

Z FAT 2020-05-10 INSERT 10 2

Z SKINNY 2020-05-10 INSERT 5

Z FAT 2020-05-10 UPDATE 10 20 2 5

Z SKINNY 2020-05-10 UPDATE 5 20 5

Z CAKE 2020-05-10 UPDATE 67 20 5

Z TUBE 2020-05-10 UPDATE 56 20 5

Z LOLA 2020-05-10 UPDATE 25 20 47 5

Z ZERO 2020-05-10 UPDATE 43 20 5

Z FLUFFY 2020-05-10 UPDATE 20 20 35 5

Z EAR 2020-05-10 UPDATE 40 20 5

Z SMALL 2020-05-10 UPDATE 40 20 5

Z BOLEK 2020-05-10 UPDATE 50 20 5

Z ZOMBIES 2020-05-10 UPDATE 75 20 13 5

Z BALD 2020-05-10 UPDATE 72 20 21 5

Z FAST 2020-05-10 UPDATE 65 20 5

Z LITTLE 2020-05-10 UPDATE 22 20 42 5

Z REEF 2020-05-10 UPDATE 65 20 5

Z HEN 2020-05-10 UPDATE 61 20 5

Z MISS 2020-05-10 UPDATE 24 20 28 5

Z MAN 2020-05-10 UPDATE 51 20 5

Z LADY 2020-05-10 UPDATE 51 20 5

 21 rows selected

ROLLBACK;

rollback complete.

As part of the trigger implementing above task, the AFTER row part

prepares data to the modification, the AFTER command part saves the

data.

The implicit cursor used by the bulk DML, during the FORALL

command, has an additional SQL%BULK_ROWCOUNT attribute

with semantics of index table. The SQL%BULK_ROWCOUNT(i)

element stores the number of rows processed during execution of the

i-th DML command. If the i-th execution does not affect rows, 0 is

returned. Although the attribute discussed has semantics of index

table, the methods associated with that table cannot be used for it.

In addition to bulk DML, the bulk binding can be also used for bulk

queries. The BULK COLLECT clause is used in the following

PL/SQL commands: SELECT, FETCH, and DML commands with the

RETURNING INTO clause. The BULK COLLECT clause appears in

each of these commands before the INTO keyword. After INTO here,

however, there is no list of variables, but a list of collections into

which are inserted values returned by commands.

Oracle database – programming Zbigniew Staszak

178

The RETURNING INTO clause, which has not been discussed so far,

is used when information about the rows modified by these commands

is needed. One way to get this information is to use the SELECT

command after running the DML command. However then, it is

necessary to make another reference to the SQL machine, which is not

optimal. After extending the syntax of all DML commands in Oracle 8

version to include the RETURNING INTO clause, this can be done

during one reference to the system kernel as part of the DML

command. The syntax discussed is as follows:

DML_command

[RETURNING {expression [, …]} INTO {variable [, …]}];

The information represented by the PL/SQL or SQL list of

expressions, separated by commas, is downloaded to a list of SQL

variables separated by commas. Corresponding variables and

expressions must be of compatible types. The expression values

downloaded include the modifications made by the DML command.

Task. To enable the topping up of his secret account, the Tiger

decided to take back one mouse from mice ration of each cat. The

pretext was to be punishment for too slow adaptation to EU standards

in terms of the length of hunted mice (notorious eating of undersized

mice in place). Using bulk binding, display current rations of mice for

all cats, change them, and then display their values after change.

DECLARE

 TYPE tn IS TABLE OF Cats.nickname%TYPE;

 TYPE tm IS TABLE OF Cats.mice_ration%TYPE;

 tab_nn tn:=tn();

 tab_mi tm:=tm();

 i BINARY_INTEGER;

 PROCEDURE mice

 IS

 BEGIN

 FOR i IN 1..tab_nn.COUNT

 LOOP

 DBMS_OUTPUT.PUT_LINE(RPAD(tab_nn(i),12)||

 ' '||tab_mi(i));

 END LOOP;

 END;

Oracle database – programming Zbigniew Staszak

179

BEGIN

 SELECT nickname,mice_ration

 BULK COLLECT INTO tab_nn,tab_mi

 FROM Cats WHERE nickname!='TIGER';

 DBMS_OUTPUT.PUT_LINE('

 Mice before change

 ');

 mice;

 UPDATE Cats

 SET mice_ration=mice_ration-1

 WHERE nickname!='TIGER'

 RETURNING nickname,mice_ration

 BULK COLLECT INTO tab_nn,tab_mi;

 DBMS_OUTPUT.PUT_LINE('

 Mice after change

 ');

 mice;

END;

anonymous block completed

 Mice before change

CAKE 67

TUBE 56

LOLA 25

ZERO 43

FLUFFY 20

EAR 40

SMALL 40

BOLEK 50

ZOMBIES 75

BALD 72

FAST 65

LITTLE 22

REEF 65

HEN 61

MISS 24

MAN 51

LADY 51

Oracle database – programming Zbigniew Staszak

180

 Mice after change

CAKE 66

TUBE 55

LOLA 24

ZERO 42

FLUFFY 19

EAR 39

SMALL 39

BOLEK 49

ZOMBIES 74

BALD 71

FAST 64

LITTLE 21

REEF 64

HEN 60

MISS 23

MAN 50

LADY 50

ROLLBACK;

rollback complete.

The above task can be solved in an equivalent way by replacing the

bulk SELECT query with an explicit cursor from which the data is

retrieved with the bulk FETCH command. The code of PL/SQL block,

after these modifications, is as follows:

DECLARE

 TYPE tn IS TABLE OF Cats.nickname%TYPE;

 TYPE tm IS TABLE OF Cats.mice_ration%TYPE;

 tab_nn tn:=tn();

 tab_mi tm:=tm();

 i BINARY_INTEGER;

 CURSOR choice IS

 SELECT nickname,mice_ration

 FROM Cats

 WHERE nickname!='TIGER';

 PROCEDURE mice

 IS

 BEGIN

 FOR i IN 1..tab_nn.COUNT

 LOOP

 DBMS_OUTPUT.PUT_LINE(RPAD(tab_nn(i),12)||

 ' '||tab_mi(i));

 END LOOP;

 END;

Oracle database – programming Zbigniew Staszak

181

BEGIN

 OPEN choice;

 FETCH choice BULK COLLECT INTO tab_nn,tab_mi;

 CLOSE wybor;

 DBMS_OUTPUT.PUT_LINE('

 Mice before change

 ');

 mice;

 UPDATE Cats

 SET mice_ration=mice_ration-1

 WHERE nickname!='TIGER'

 RETURNING nickname,mice_ration

 BULK COLLECT INTO tab_nn,tab_mi;

 DBMS_OUTPUT.PUT_LINE('

 Mice after change

 ');

 mice;

END;

Bulk dynamic SQL

Since Oracle 9i version, internal dynamic SQL has been expanded for

the SELECT command, DML commands and FETCH command to

possibilities of bulk SQL.

Syntax of the bulk dynamic version of SELECT statement is as

follows:

EXECUTE IMMEDIATE string_expression

BULK COLLECT INTO {collection [, …]};

where the string expression defines the SELECT statement (without

the INTO clause!)

Syntax of the bulk dynamic version of DML commands is as follows:

FORALL collection_index IN begining_index .. final_index

EXECUTE IMMEDIATE string_expression

USING {bound_element_of_collection_with_index_collection_index

 [, …]}

[RETURNING BULK COLLECT INTO {collection [, …]}];

Oracle database – programming Zbigniew Staszak

182

where string expression defines a DML command that contains bound

variables preceded by colon character, corresponding to proper

elements of the bound collections (USING clause). A DML command

defined by a string can contain its internal RETURNING clause with a

list of returned values. The returned values are then substituted into

the corresponding elements of the collection, which (collections) are

specified after the RETURNING BULK COLLECT clause (the last

clause is then required).

Syntax of the bulk dynamic version of the FETCH command is as

follows:

FETCH cursor_variable

BULK COLLECT INTO {collection [, …]};

where the cursor variable is open using the OPEN ... FOR ...

command from native dynamic SQL.

Task. Solve the task of creating individual secret mice accounts using

dynamic bulk SQL.

DECLARE

 TYPE tn IS TABLE OF Cats.nickname%TYPE;

 TYPE tl IS TABLE OF NUMBER;

 TYPE td IS TABLE OF DATE;

 tab_nn tn:=tn();

 tab_le tl:=tl();

 tab_de td:=td();

 text_cur VARCHAR2(200):=

 'SELECT level,nickname

 FROM Cats

 START WITH chief IS NULL

 CONNECT BY PRIOR nickname=chief';

 cur cursor.c;

 maxl NUMBER(2):=0;

 chow_much NUMBER(4);

 jt NUMBER(1);

BEGIN

 OPEN cur FOR text_cur;

 FETCH cur BULK COLLECT INTO tab_le,tab_nn;

 CLOSE cur;

Oracle database – programming Zbigniew Staszak

183

 FOR j IN 1..tab_le.COUNT

 LOOP

 IF tab_le(j)>maxl THEN maxl:=tab_le(j); END IF;

 SELECT COUNT(*) INTO jt FROM User_tables

 WHERE table_name=tab_nn(j);

 IF jt=1 THEN EXECUTE IMMEDIATE 'DROP TABLE '||tab_nn(j);

 END IF;

 EXECUTE IMMEDIATE 'CREATE TABLE '||tab_nn(j)||'

 (entry_date DATE,release_date DATE)';

 END LOOP;

 FOR j IN 1..tab_le.COUNT

 LOOP

 tab_de.TRIM(tab_de.COUNT);

 FOR i IN 1..maxl-tab_le(j)+1

 LOOP

 tab_de.EXTEND; tab_de(i):=SYSDATE;

 END LOOP;

 FORALL i IN 1..maxl-tab_le(j)+1

 EXECUTE IMMEDIATE 'INSERT INTO '||tab_nn(j)||

 ' (entry_date) VALUES (:en_da)'

 USING tab_de(i);

 END LOOP;

 FOR j IN 1..tab_le.COUNT

 LOOP

 EXECUTE IMMEDIATE

 'SELECT COUNT(*)-COUNT(release_date) FROM '||tab_nn(j)

 INTO chow_much;

 DBMS_OUTPUT.PUT_LINE(RPAD(tab_nn(j),10)||

 ' - Number of available mice: '||chow_much);

 END LOOP;

END;

anonymous block completed

TIGER - Number of available mice: 4

BALD - Number of available mice: 3

CAKE - Number of available mice: 2

FAST - Number of available mice: 2

MISS - Number of available mice: 2

TUBE - Number of available mice: 2

BOLEK - Number of available mice: 3

LITTLE - Number of available mice: 3

LOLA - Number of available mice: 3

REEF - Number of available mice: 3

EAR - Number of available mice: 2

LADY - Number of available mice: 2

MAN - Number of available mice: 2

SMALL - Number of available mice: 2

ZOMBIES - Number of available mice: 3

FLUFFY - Number of available mice: 2

HEN - Number of available mice: 2

ZERO - Number of available mice: 1

Oracle database – programming Zbigniew Staszak

184

Task. After taking away one mouse from the basic ration of each cat,

conscience said to Tiger that this not good. So he decided to increase

each cat's ration by one mouse. Perform this task using bulk dynamic

SQL. Display the total mouse ration after its increase.

DECLARE

 TYPE tn IS TABLE OF Cats.nickname%TYPE;

 TYPE te IS TABLE OF Cats.mice_extra%TYPE;

 TYPE tt IS TABLE OF NUMBER(5);

 tab_nn tn:=tn();

 tab_me te:=te();

 tab_rt tt:=tt();

 cur cursor.c;

 text_cur VARCHAR2(200):='SELECT nickname,NVL(mice_extra,0)+1

 FROM Cats';

 maxl NUMBER(2):=0;jt NUMBER(1);

BEGIN

 OPEN cur FOR text_cur;

 FETCH cur BULK COLLECT INTO tab_nn,tab_me;

 CLOSE cur;

 FORALL i IN 1..tab_nn.COUNT

 EXECUTE IMMEDIATE

 'UPDATE Cats

 SET mice_extra=:tme

 WHERE nickname=:tps

 RETURNING NVL(mice_ration,0)+NVL(mice_extra,0)INTO :total'

 USING tab_me(i),tab_nn(i)

 RETURNING BULK COLLECT INTO tab_rt;

 DBMS_OUTPUT.PUT_LINE('

 Nickname Mice

 ---------------------');

 FOR i IN 1..tab_nn.COUNT

 LOOP

 DBMS_OUTPUT.PUT_LINE(' '||RPAD(tab_nn(i),12)||

 ' '||tab_rt(i));

 END LOOP;

END;

anonymous block completed

Oracle database – programming Zbigniew Staszak

185

 Nickname Mice

 CAKE 68

 TUBE 57

 LOLA 73

 ZERO 44

 FLUFFY 56

 EAR 41

 SMALL 41

 TIGER 137

 BOLEK 51

 ZOMBIES 89

 BALD 94

 FAST 66

 LITTLE 65

 REEF 66

 HEN 62

 MISS 53

 MAN 52

 LADY 52

