
Oracle database – programming Zbigniew Staszak

73

3. PL/SQL language

PL/SQL (Procedural Language /SQL) is a procedural extension of the

SQL language proposed by Oracle that allows the use of SQL

commands in the structure of blocks constituting a transaction

programming tool. As part of programs of this language, besides SQL

commands, it is possible to use structures from procedural languages

such as:

− variables and data types (predefined as well as user-defined),

− control structures such as conditional instructions and loop

instructions,

− procedures and functions,

− methods and object types.

There were the following important reasons for extending the

capabilities of SQL language:

− data manipulation carried out by SQL is not the only task of

handling the database (additional tasks are carried out at the

application level),

− business rules (also those regarding data security) controlled at

the application level can be bypassed by using another database

access tool. This exposes the data to intentional or accidental

modifications,

− each SQL query requires a separate connection to the database

server which increases the network load (it would be better to

send many queries during one connection).

PL/SQL, by possibility of defining subprograms and packages

stored in the database, enables "shifting" many tasks related to the

broadly understood database service to the database server,

reducing the client application to a typical screen interface. This

allows faster access to data increasing, at the same time, their

security. Sending multiple SQL commands within one PL/SQL

block reduces network load and leads to faster application

operation.

Oracle database – programming Zbigniew Staszak

74

3.1 Basic information and concepts

The following is a set of introductory information and concepts for

programming in PL/SQL.

3.1.1 Block structure of PL/SQL program

The PL/SQL program consists of one or more blocks. Blocks can be

independent or nested one in another. There are two types of blocks:

anonymous block and named block.

Anonymous block: unnamed PL/SQL block, declared in such the

 place of application where it will be executed.

The anonymous block is usually passed from a client-side program, to

call subprograms stored in the database.

Structure anonymous block is as follows:

[DECLARE

-- definitions and declarations of PL/SQL objects for a block]

BEGIN

 -- sentences of the executable part of the block

[EXCEPTION

-- exception handling sentences]

END;

/

Definitions of objects for block, sentences of executable part (there

must be at least one sentence here) and exception handling sentences

are separated by a semicolon. The block terminates its operation,

when all sentences of the executable part are done or an exceptional

situation (error) occurs, handled or not in the exception handling part.

Internal blocks may occur as part of the executable part as well as the

part of exception handling. In the executable part, internal blocks are

usually used to handle exceptions that are not to end the operation of

the external block, and in the part of handle exceptions to handle

exceptions to exceptions. Each object defined in a given block is

available only in this block (and thus in its internal blocks). In the case

Oracle database – programming Zbigniew Staszak

75

of defining objects with the same names in the external block and

internal blocks, the principle of covering names applies (for the time

of operation of the internal block, the object defined in the external

block is not available).

Named block: PL/SQL block to which name is assigned. This name

 one can use in PL/SQL program.

There are three types of named blocks:

− labeled block: labeled block: this is the anonymous block to

which its label has been assigned, as the name. This name allows

one to refer to the block variables from the internal block if in

internal block exist variable of the same name,

− subprogram block: it is a procedure or function that can be

explicitly called (by name) from each type of block. The

subprogram can be stored in a database,

− trigger block: it is a block is stored in the database implicitly

executed when it occurs event specified in trigger definition.

The structure of the labeled block is the same as the structure of the

anonymous block. The structure of the subprogram and the trigger

differ practically from the structure of the anonymous block only by

the occurrence of the header. Therefore, anonymous blocks will be

discussed first.

3.1.2. Displaying diagnostic messages on the screen

To display diagnostic messages from the PL/SQL block level, one can

use the procedures from the DBMS_OUTPUT package named

PUT_LINE, PUT and NEW_LINE. Procedure PUT_LINE places in

the buffer a message with a maximum length of 255 (with a sign of go

to a new line), PUT a message without going to a new line - this

transition is explicitly performed by the NEW_LINE function. In

order for the messages entered into the buffer to appear on the screen,

in the SQL Developer environment should select the Dbms Output

element in the View tab.

Oracle database – programming Zbigniew Staszak

76

The PUT_LINE and PUT procedures are called according to the

syntax:

PUT_LINE(message [, VARCHAR2|NUMBER|DATE]);

PUT(message [, VARCHAR2|NUMBER|DATE]);

Calling of procedures from packages is preceded by the package

name, e.g .:

DBMS_OUTPUT.PUT_LINE('Wiva TIGER, Lord of Lords!!!');

The DBMS_OUTPUT package functions are only used to test the

operation of PL/SQL blocks. The real output of information to the

screen takes place as part of the on-screen interface of the database

application.

Task. Define an anonymous block inserting new rows into the Cats

relation through the previously defined Band4 view. In the case of

entering incorrect data (e.g. a repeating cat name - a unique index

should be put on the cat name) appropriate messages ought to appear

on the screen.

CREATE UNIQUE INDEX unique_name ON Cats(name);

unique index UNIQUE_NAME created.

BEGIN

 INSERT INTO Band4 VALUES ('&nickname','&name','&function',

 &mice_ration,&band_no);

 COMMIT;

EXCEPTION

 WHEN DUP_VAL_ON_INDEX

 THEN DBMS_OUTPUT.PUT_LINE('Repeated pseudo or name!!! –

 NO ENTRY!');

 WHEN OTHERS

 THEN DBMS_OUTPUT.PUT_LINE(SQLERRM);

END;

nickname – YUPITER

name – MRUCZEK

function – CAT

mice_ration – 40

band_no – 4

Repeated pseudo or name!!! - NO ENTRY!

Oracle database – programming Zbigniew Staszak

77

The & sign before the variable means that its value is to be entered

from the keyboard. The WHEN ... THEN command handles an

exception. The exception is listed (its name) after WHEN and is

handled as specified after THEN. DUP_VAL_ON_INDEX is a

predefined exception indicating a violation of a unique index (this also

applies to the nickname as the key attribute - the index is

automatically applied to the primary key and uniqueness is a feature

of this key). OTHERS specifies any exceptions other to those

previously mentioned. SQLERRM is a function that displays a system

message about the error (about exception).

3.1.3 Environment for PL/SQL

PL/SQL blocks are processed by the PL/SQL machine residing in the

DBMS or in the utility program. If the block is called from the level of

the application created via the utility with the PL/SQL machine

implemented, the block is processed by this machine (execution on the

client side), otherwise the block is processed by PL/SQL machine

residing in SZBD (server-side execution). In both cases, however, the

PL/SQL machine performs only procedural orders and sends SQL

orders to the executor of SQL orders in the DBMS.

3.1.4 Identifiers in PL/SQL

The identifier in PL/SQL begins with a letter, followed by any

sequence of characters consisting of letters, numbers, and characters

'$', '_', and '#'. The identifier declared in apostrophes ("identifier") may

contain any characters. The identifier can be up to 30 characters long.

Oracle database – programming Zbigniew Staszak

78

3.1.5 Variables and constants

Within the PL/SQL blocks it is possible to declare the following types

of variables:

− scalar: types known from the Oracle SQL dialect,

− complex: record type, array types called collections (index tables

up to Oracle 7 version, nested tables and arrays of variable size

available since Oracle 8 version, multi-level collections

available since Oracle 9i version - collections collections),

− references (pointers: REF CURSOR available up to Oracle 7

version, REF object_type available since Oracle 8 version),

− LOB: BFILE, CLOB, NCLOB, BLOB (available through the

DBMS_LOB package since Oracle 8 version, support large

binary or character objects up to 4 GB without restrictions

specific to LONG and LONG RAW, e.g. such a restriction as

this, that only one attribute of this type may appear in relation or

lack of possibility manipulation on them using triggers).

The variable is declared according to the syntax:

Variable_name type [[NOT NULL] {DEFAULT | :=} expression];

If NOT NULL appears in the declaration, it is mandatory to specify

the default value.

A very often used mechanism is to declare a variable with a type

compatible with the type of relation attribute. This is done in

accordance with the syntax:

variable_name relations_name.attribute%TYPE;

The constant within the PL / SQL block is defined in accordance with

the syntax:

constant_name CONSTANT type := expression;

Oracle database – programming Zbigniew Staszak

79

The following are sample variable declarations and definitions of

constants.

Surname VARCHAR2(25):='Kowalski';

name VARCHAR2(15):='Jan';

initial VARCHAR2(4) :=

 SUBSTR(nazwisko,1,1)||'.'||SUBSTR(imie,1,1)||'.';

counter INTEGER NOT NULL:=0;

pesel NUMBER(11);

kids BOOLEAN:=FALSE;

end BOOLEAN;

date DATE;

nick Cats.nickname%TYPE;

pi CONSTANT NUMBER(9,5):=3.14159;

3.1.6. Assignment operation

The assignment operation within the PL/SQL block is performed

according to the syntax:

variable_name:=PL/SQL_expression;

As part of the PL/SQL expression, one can use all the functions

known from SQL (except GRATEST, LEAST, DECODE and group

functions), and additionally, if the expression occurs within the

EXCEPTION section of the block, one can use the functions

SQLCODE (returns the exception number) and SQLERRM (returns

exception message including its number).

The following are sample assignments.

counter:=counter+1;

data:=counter||'. '||initial||' '||pesel; -- auto-conversion

kids:=NOT kids;

end:=counter=100;

Oracle database – programming Zbigniew Staszak

80

Operators in the PL/SQL expression are executed in a different order

than in the SQL expression. The order of execution (priority) of

operators in PL/SQL is presented below.

1. **, NOT

+, - (as number signs)

2. *, /

3. +, - , ||

4. =, !=, <, >, <=, >=, IS NULL, LIKE, BETWEEN, IN

5. AND

6. OR

For logical expressions occurring under PL/SQL commands in which

the value NULL appears, the same rules (logic) apply as those

applicable for logical expressions under SQL clauses.

3.1.7. SQL commands in PL/SQL

As part of the PL/SQL block it is allowed to directly use DML, DCL

and SELECT commands, but SELECT with modified syntax returning

only one row (the syntax of this command will be presented later).

DDL commands can be placed in a block only through subprograms

of the DBMS_SQL package implementing the so-called dynamic

SQL or through the use of so-called internal (also called native)

dynamic SQL (native dynamic SQL).

3.1.8. Cursor

Each SQL command placed in the PL/SQL program is processed in a

memory area called a workspace or context area. The database server

uses this area to store query result data and to store additional

information regarding the status of the query, i.e. attributes. The

cursor is an identifier for this area.

Oracle database – programming Zbigniew Staszak

81

There are two types of cursors:

− implicit, used automatically when executing INSERT,

UPDATE, DELETE and SELECT commands.

− explicit, used to handle queries operating on multiple rows

(when these rows require "individual treatment") and in so-

called loops with the cursor. Such a cursor is explicitly defined

and operated by the programmer.

Explicit cursors will be presented later in the lecture.

The implicit cursor has the following attributes:

Attribute Description

SQL%ROWCOUNT Specifies the number of rows processed by the

SQL command.

SQL%FOUND Takes TRUE if the command processed at

least one row, FALSE otherwise.

SQL%NOTFOUND Takes TRUE if no rows have been processed,

FALSE otherwise.

SQL%ISOPEN Takes TRUE if the cursor is open, FALSE

otherwise. The implicit cursor is automatically

closed, hence the attribute is always FALSE.

Since the Oracle 8i version, there is, for the implicit cursor, an

additional attribute SQL%BULK_ROWCOUNT and since Oracle 9i

the SQL%BULK_EXCEPTION attribute, both related to the so-called

primary mass binding (also named mass SQL - this issue will be

presented later). Cursor attributes can be used in PL/SQL commands

but not in the SQL commands themselves.

Oracle database – programming Zbigniew Staszak

82

Task. Modify the relation Cats so that each cat with an extra mice

ration greater than 20 could receive one additional mouse as part of

this ration. Display the number of modified rows.

DECLARE

 number_mod NUMBER;

BEGIN

 UPDATE Cats SET mice_extra=mice_extra+1

 WHERE mice_extra>20;

 number_mod:=SQL%ROWCOUNT;

 DBMS_OUTPUT.PUT_LINE('Number modified rows: '||number_mod);

END;

anonymous block completed

Number modified rows: 6

ROLLBACK;

rollback complete.

It should be remembered that the PL/SQL block is treated as a

transaction unit, therefore even after setting the AUTOCOMMIT

parameter to ON, the DML commands from the block will be

committed only after it is finished (unless the commits occur in the

block). Similarly, if an unhandled error occurs, the block will not

make and the DML commands from the block are rollbacked.

3.1.8. SELECT command

A SELECT command placed in a PL/SQL block can only return one

row. If no rows will be returned results in the exception

NO_DATA_FOUND will appear, if the number of rows returned will

be greater than 1 the exception TOO_MANY_ROWS will be

returned. The following clauses are allowed in such a command:

SELECT

INTO

FROM

[WHERE]

[GROUP BY]

[HAVING]

[ORDER BY]

[FOR UPDATE [OF {atrybut [, ...]}]] [NOWAIT | WAIT n]

Oracle database – programming Zbigniew Staszak

83

The INTO clause, which does not exist in pure SQL, is followed by a

list of variables to which the values selected in the SELECT clause are

assigned. When the FOR UPDATE clause (blocking of rows/attributes

to be corrected) is used, the GROUP BY and HAVING clauses and

the DISTINCT qualifier are prohibited. Available since Oracle 9i

version the WAIT clause specifies the maximum time of the command

waits for access to a row/attributes (n is the number of seconds).

Task. Calculate what percentage of cats receive an additional ration

of mice.

DECLARE

 n_cats NUMBER;

 n_with_extra NUMBER;

BEGIN

 SELECT COUNT(*) INTO n_cats

 FROM Cats;

 SELECT COUNT(mice_extra) INTO n_with_extra

 FROM Cats;

 DBMS_OUTPUT.PUT_LINE('*'||LPAD('*',54,'*')||'*');

 DBMS_OUTPUT.PUT_LINE('*'||LPAD(' ',54,' ')||'*');

 DBMS_OUTPUT.PUT_LINE('* In herd '||

 ROUND(n_with_extra/n_cats*100,2)||

 '% cats have an additional mice ration *');

 DBMS_OUTPUT.PUT_LINE('*'||LPAD(' ',54,' ')||'*');

 DBMS_OUTPUT.PUT_LINE('*'||LPAD('*',54,'*')||'*');

EXCEPTION

 WHEN ZERO_DIVIDE

 THEN DBMS_OUTPUT.PUT_LINE('No cats in the herd!!!');

 WHEN OTHERS

 THEN DBMS_OUTPUT.PUT_LINE(SQLERRM);

END;

anonymous block completed

**

* *

* In herd 38,89% cats have an additional mice ration *

* *

**

Oracle database – programming Zbigniew Staszak

84

3.2. Exceptions

Block execution is always completed when an exception occurs. There

are two classes of exceptions:

• predefined - having their numbers (codes), defined by the system

constructor,

• user-defined.

The following are some predefined exceptions.

No Name Description
ORA-0001 DUP_VAL_ON_INDEX Violation of the uniqueness

constraint.

ORA-0051 TIMEOUT_ON_RESOURCE The resource allocation has

timed out.

ORA-0061 TRANSACTION_BACKED_OUT Transaction rolled back due

to deadlock.

ORA-1001 INVALID_CURSOR Invalid cursor operation.

ORA-1012 NOT_LOGGED_ON No database connection.

ORA-1017 LOGIN_DENIED Unauthorized user or

incorrect password.

ORA-1403 NO_DATA_FOUND No data found.

ORA-1422 TOO_MANY_ROWS SELECT INTO returns more

than one row.

ORA-1476 ZERO_DIVIDE Division by zero.

ORA-1722 INVALID_NUMBER SQL error in conversion

during numeric value.

ORA-6500 STORAGE_ERROR Memory error or out of

memory.

ORA-6501 PROGRAM_ERROR Incorrect operation of the

PL/SQL program.

ORA-6502 VALUE_ERROR PL/SQL error during

truncation or conversion.

ORA-6511 CURSOR_ALREADY_OPEN Attempt to open cursor

already open.

 OTHERS Another exception - served

last.

Oracle database – programming Zbigniew Staszak

85

3.2.1. Exception handling

Predefined by the system constructor and user-defined exceptions can

be handled (the handling is not mandatory) in the EXCEPTION

section of the block using the command:

WHEN exception_identifier THEN action;

Exception identifiers in the WHEN clause can be combined with

logical operators. To handle in the EXCEPTION section an user-

defined exception, one must declare it in the DECLARE section of the

block according to the syntax:

exception_identifier EXCEPTION;

A user defined exception is raised using the command:

RAISE exception_identifier;

Lack of handling in the EXCEPTION section of the exception raised

causes the error ORA-06510 (handled or not).

Task. For cats with the function specified by keyboard, change the

ration of mice to the value specified by keyboard. Handle all

exceptions.

DECLARE

 maxm Functions.max_mice%TYPE;

 minm Functions.min_mice%TYPE;

 p1 Functions.function%TYPE:='&function';

 p2 Cats.mice_ration%TYPE:=&new_ration;

 too_little_or_too_much EXCEPTION;

BEGIN

 SELECT max_mice,min_mice INTO maxm,minm FROM Functions

 WHERE function=p1;

 IF p2 BETWEEN minm AND maxm

 THEN UPDATE Cats SET mice_ration=p2

 WHERE function=p1;

 ELSE RAISE too_little_or_too_much;

 END IF;

Oracle database – programming Zbigniew Staszak

86

EXCEPTION

 WHEN NO_DATA_FOUND

 THEN DBMS_OUTPUT.PUT_LINE('Invalid function!!!');

 WHEN too_little_or_too_much

 THEN DBMS_OUTPUT.PUT_LINE('Not for this function!!!');

 WHEN OTHERS

 THEN DBMS_OUTPUT.PUT_LINE(SQLERRM);

END;

anonymous block completed

function – EATER

new_ration – 50

Invalid function!!!

To handle exceptions, one can use system error messages returned by

the SQLERRM function. If any constraint defined as part of the

CREATE TABLE command is violated, the constraint name will be

part of the system message returned by the SQLERRM function. For

example, assuming that when creating the Functions relation, the

constraint CHECK(max_mice<200) was named fu_maxm_ch, in the

case of a DML operation, which sets the value of max_mice above

199, the OTHERS exception can be handled as follows:

...
EXCEPTION

 WHEN OTHERS

 THEN IF UPPER(SQLERRM) LIKE '%FU_MAXM_CH%'

 THEN DBMS_OUTPUT.PUT_LINE('Ration>=200!!! ');

 ELSE DBMS_OUTPUT.PUT_LINE('Error: '||SQLERRM);

 END IF;

END;

Another way to handle errors is to use the

RAISE_APPLICATION_ERROR function, introduced in Oracle 7

version, which allows one to create own error messages. The syntax

for calling this function is:

RAISE_APPLICATION_ERROR(exception_number, message);

The function, unlike the exception supported in the EXCEPTION

section, stops block operation, rollbacks all changes and displays the

Oracle database – programming Zbigniew Staszak

87

exception number and message specified by the programmer. The

exception number is a parameter from -20000 to -20999. The block

from the previous task, using the RAISE_APPLICATION_ERROR

function, is following:

DECLARE

 maxm Functions.max_mice%TYPE;

 minm Functions.min_mice%TYPE;

 p1 Functions.function%TYPE:='&function';

 p2 Cats.mice_ration%TYPE:=&new_ration;

BEGIN

 SELECT max_mice,min_mice INTO maxm,minm FROM Functions

 WHERE function=p1;

 IF p2 BETWEEN minm AND maxm

 THEN UPDATE Cats SET mice_ration=p2

 WHERE function=p1;

 ELSE RAISE_APPLICATION_ERROR(-20001,

 'Not for this function!!!');

 END IF;

EXCEPTION

 WHEN NO_DATA_FOUND

 THEN DBMS_OUTPUT.PUT_LINE('Invalid function!!!');

 WHEN OTHERS

 THEN DBMS_OUTPUT.PUT_LINE(SQLERRM);

END;

anonymous block completed

function – BOSS

new_ration – 250

Not for this function!!!

3.2.2. PRAGMA directives

PL/SQL has a number of directives acting as instructions for the

compiler (concept shared with ADA). The use of these directives

announces in the declaration section of the block, according to the

syntax:

PRAGMA directive_name;

Compiler directives will be discussed when they will appear during

the lecture.

Oracle database – programming Zbigniew Staszak

88

3.2.3. Spread of exceptions

If an exception occurs within the internal block that the block does not

handle, the exception will spread. This means that the exception is

passed through subsequent parent blocks until service is encountered.

If no such handling exists in any of the blocks, then the exception

passes to the external environment.

BEGIN
...

 BEGIN
 ...

-- exceptional situation A
 ...

EXCEPTION

-- no exception handling A

 END;
...

EXCEPTION

-- here handling exception A

END;

3.2.4. Notes on exceptions

The following policies may be useful for handling exceptions.

1. A user-defined exception, like a variable, has its scope (block in

which it was defined). If an exception has spread beyond its

scope, one cannot refer to it by name. The solution to this

problem is to define an exception in the package (packages will

be discussed in the near future). Then its name will always be

available (the package is an object stored in the database).

2. Exceptions related to all commands in block are handled in one

exception handling section. This causes, when using several

SQL commands of the same type (e.g. several SELECT ... INTO

.. commands), difficulties in determining the instruction causing

the error. The solution to the problem is to place each such

command in a nested block (such block has its exception

handling section) or mark each such command with a unique tag

value that can be used in EXCEPTION section to handle the

exception for particular command.

3. It is a good practice to avoid unhandled exceptions. This is

usually achieved by using the OTHERS clause in the exception

handling section.

Oracle database – programming Zbigniew Staszak

89

3.3. Instructions

In the PL/SQL block (program), in addition to SQL commands, there

may be control structures such as conditional statements and loop

instructions. Their syntax is shown below.

3.3.1. Conditional statement IF

The syntax of conditional statement IF is as follows:

IF condition THEN {command; [...]}

 [ELSIF condition THEN {command; [...]}] |

 [ELSE {statement; [...]}

END IF;

The value TRUE of the condition causes execution commands after

THEN, the value FALSE or NULL causes omission these commands

and executing commands after ELSE, if this clause appears.

Command means PL/SQL or SQL statement. If the next IF statement

is to be included in the ELSE clause, it is more convenient to use the

ELSIF clause (then there is no END IF at the end of each nested IF

statement).

3.3.2. Conditional statement CASE (from Oracle 9i)

There are two forms of CASE statements: simple and searched.

Simple statement:

[<<label>>] CASE selector

 {WHEN condition THEN {command; [...]} [...]}

 [ELSE {command; […]}]

 END CASE [label];

Command means PL/SQL or SQL statement. A selector is an

expression of any type whose value is compared with the values of

Oracle database – programming Zbigniew Staszak

90

expressions after WHEN clause (their type must match the type of the

selector). Commands are executed after the first WHEN clause for

which the value of the expression is equal to the value of the selector.

If an expression with a value equal to the selector value is missing, the

commands in the ELSE clause are executed (if the ELSE clause is

omitted, error ORA-6592 CASE_NOT_FOUND is reported).

Searched statement:

CASE

 {WHEN condition THEN {command; [...]} [...]}

 [ELSE {command; […]}]

END CASE;

The searched statement executes the commands from the first WHEN

clause for which the condition is TRUE. For this form of the CASE

conditional statement, in the absence of the ELSE clause, it is required

to use at least two WHEN clauses.

Similar to the simple statement, the inability to execute any command

(e.g. with ELSE omitted) causes an exception.

3.3.3 CASE expression

In PL/SQL, the CASE keyword, in addition to instruction, can be act

as function. Below is an illustrative such a piece of code.

ni:='&nickname';

SELECT gender INTO ge

FROM Cats

WHERE nickname=ni;

sex:=CASE ge

 WHEN 'M' THEN 'Male cat'

 WHEN 'F' THEN 'Female cat'

 ELSE 'Gender unknown'

 END; -- attention!!! END instead of END CASE

...

The variable sex takes here value 'Male cat', 'Female cat' or

'Gender unknown'.

Oracle database – programming Zbigniew Staszak

91

3.3.4. Loop instructions

The simplest type of loop is the so-called basic (straight) loop with

syntax:

[<<label>>] LOOP

 {command; [...]}

 END LOOP [label];

Command here means PL/SQL or SQL statement. Exit from the loop

follows by executing one of the commands EXIT, GOTO or the

already known RAISE command.

EXIT [loop_label] [WHEN condition];

If EXIT appears as a stand-alone statement, then the WHEN clause

with an exit condition is required. This clause is not necessary when

EXIT appears as a command after the THEN clause of the IF

conditional statement. In the case of nested loops, the loop from which

exit follows is determined by its label.

GOTO label;

The above instruction defines an unconditional jump to the label

<<label>> in the current block or external block (but not to inside

another control instruction).

...

LOOP

 counter:=counter+1;

 ...

 IF counter=10 THEN EXIT;

 END IF;

 ...

END LOOP;

...

Oracle database – programming Zbigniew Staszak

92

...

LOOP

 ...

 EXIT WHEN ration>maxm;

 ...

END LOOP;

...

...

<<ext>>LOOP

 ...

 LOOP

 counter:=counter+1;

 ...

 EXIT ext WHEN ration>maxm;

 EXIT WHEN counter=10;

 ...

 END LOOP;

 END LOOP ext;

...

The first condition in the example above cause exit from both loops,

the second only from the inner loop.

The second type of loop in PL/SQL is the FOR loop. The FOR loop

syntax is as follows:

FOR control_variable IN [REVERSE] start_value .. end_value

basic_loop;

The control variable of type BINARY_INTEGER or, since Oracle 9i

version, PLS_INTEGER is implicitly declared and changes every 1

from the start_value to the end_value (every -1 from the final value to

the initial value when REVERSE is used). The start and end values

can be expressions of any type convertible to a numeric value.

Oracle database – programming Zbigniew Staszak

93

The third type of loop in PL/SQL is the WHILE loop. The WHILE

loop syntax is as follows:

WHILE condition

basic_loop;

The condition is checked at the beginning of each iteration. The loop

terminates when the condition is set to FALSE or NULL.

FOR and WHILE loops can also be terminated by using the EXIT,

GOTO or RAISE commands. Both of these loops can also be labeled

(e.g. for nesting different types of loops).

3.3.5. NULL statement

If in the PL/SQL code needs to indicate that no command is to be

performed, although the syntax requires it, then one can use in that

place the NULL statement. This instruction serves only as a "filler".

For example, if one need to handle an exception without any action,

then the code after the EXCEPTION clause is as follows:

...

EXCEPTION

 ...

 WHEN OTHERS THEN NULL;

END;

...

3.3.6. Blocks with labels

Blocks can be marked with labels (without the outermost block - this

can be bypassed by adding artificial external BEGIN and END).

Oracle database – programming Zbigniew Staszak

94

BEGIN -- artificial

 <<ext>>DECLARE

 x NUMBER;

 ...

 BEGIN

 ...

 <<ins>>DECLARE

 x NUMBER:=10;

 ...

 BEGIN

 ext.x:=ext.x+1;

 /* the use of an ext label specifies

 reference to variable x from the

 external block*/

 ...

 END int;
...

 END ext;

END; -- artificial

A block label placed in front of a variable indicates that the variable is

from a block described with that label. This allows one to identify

variables with the same names, coming from different blocks and

available within one block.

3.4. Complex data types

Two types of complex data types can be used in PL/SQL blocks. The

first is records, the second is collections. There are three types of

collections: index tables, nested tables (since Oracle 8 version) and

variable size tables (since Oracle 8 version). Since the Oracle 9i

version, it is also possible to build multi-level collections (collections

in which collections are their elements). Nested tables and variable

size tables are elements of the object-oriented extension of the Oracle

database, hence they will be part of the lecture on this topic.

3.4.1. Records

A record variable can be declared in two ways:

− by using the %ROWTYPE pseudo-attribute,

− by using an explicitly defined record type (TYPE ... IS

RECORD ...).

Oracle database – programming Zbigniew Staszak

95

The syntax for the record variable declaration using the %ROWTYPE

pseudo-attribute is as follows:

record_variable_name object_name%ROWTYPE;

The structure of the record defined in this way is consistent with the

structure of the object's row (relation, view, explicit cursor). The field

names in the record are the same as the object attribute names. Such a

record can be filled in the INTO clause of the SELECT command or

by assigning values to individual fields. Access to the record field is

based on the syntax:

record_variable_name.field_name

In the example below, the SELECT command fills with the Tiger data

a record variable with the same structure as row of the relation Cats.

DECLARE

 cats_r Cats%ROWTYPE;

BEGIN

 SELECT * INTO cats_r

 FROM Cats

 WHERE nickname='TIGER';

...

END;

The only operation allowed on a record variable is to assign its value

to another record variable of the same type.

The record type is explicitly defined according to the syntax:

TYPE type_name

IS RECORD ({field_name type [NOT NULL][:=expression] [, ...]});

Oracle database – programming Zbigniew Staszak

96

The following is an example of definition of the record type and

declaration of variable of this type.

DECLARE

 TYPE about_cats IS RECORD(nickname VARCHAR2(15),

 sex VARCHAR2(1) NOT NULL:='M',

 hunts_since DATE);

 about_cats_r about_cats;

 ...

END;

3.4.2. Index tables

Index tables are the first type of collection discussed in this lecture.

The other two types (nested tables and variable size tables), due to the

use of object elements, will be presented after discussing object

extensions of the Oracle system.

The index table type is defined according to the syntax:

TYPE type_name IS TABLE OF table_element_type

INDEX BY index_type;

where index_type is an integer type (BINARY_INTEGER or, since

Oracle 9i version, PLS_INTEGER) or a string type (VARCHAR2

with length limitation or LONG) and table_element_type is any scalar

type, record type (since Oracle 7 version), object type (since Oracle 8

version) or any the collection (since Oracle 9i version).

Access to the field of index table is obtained according to the syntax:

variable_name(index_value)

One can use the %ROWTYPE pseudo-attribute to define the type of

record index table. Below is an example of such a definition.

TYPE CATS_TABLE IS TABLE OF Cats%ROWTYPE

INDEX BY BINARY_INTEGER;

t_cats CATS_TABLE;

Oracle database – programming Zbigniew Staszak

97

In terms of syntax, the index table is treated as an array, but it is

actually similar to a database relation (it consists of two columns:

KEY of type index_type and VALUE of type table element). This

table has an unlimited size (the only limit is the size of the index type)

and its elements do not have to be indexed sequentially (index value

can be any expression of type index_type).

Task. For each band, remember in the index table the data of the cat

with the longest belonging to the herd (one representative).

DECLARE

 TYPE rec_da IS RECORD (ni Cats.nickname%TYPE,

 da DATE);

 TYPE tab_da IS TABLE OF rec_da INDEX BY BINARY_INTEGER;

 tab_re tab_da;

 i BINARY_INTEGER; nb NUMBER; n NUMBER;

BEGIN

 SELECT MIN(band_no),MAX(band_no) INTO n,nb

 FROM Cats;

 FOR i IN n..nb

 LOOP

 BEGIN

 SELECT nickname,in_herd_since INTO tab_re(i)

 FROM Cats

 WHERE band_no=i

 AND in_herd_since=(SELECT MIN(in_herd_since)

 FROM Cats

 WHERE band_no=i)

 AND ROWNUM=1;

 DBMS_OUTPUT.PUT('Longest in Band '||i||' - ');

 DBMS_OUTPUT.PUT(tab_re(i).ni||' since ');

 DBMS_OUTPUT.PUT_LINE(TO_CHAR(tab_re(i).da,'YYYY-MM-DD'));

 EXCEPTION

 WHEN NO_DATA_FOUND THEN NULL;

 END;

 END LOOP;

 -- continuation of the program using data from the tables

EXCEPTION

 WHEN NO_DATA_FOUND

 THEN DBMS_OUTPUT.PUT_LINE('No cats');

 WHEN OTHERS THEN DBMS_OUTPUT.PUT_LINE(SQLERRM);

END;

anonymous block completed

Longest in Band 1 - TIGER since 2002-01-01

Longest in Band 2 - FAST since 2006-07-21

Longest in Band 3 - ZOMBIES since 2004-03-16

Longest in Band 4 - REEF since 2006-10-15

Oracle database – programming Zbigniew Staszak

98

Since Oracle 7.3 version, one can also use its so-called attributes to

support the index tables. Those are:

− EXISTS (n) - returns TRUE or FALSE depending on whether

the element with index n exists or not (ORA-1403 error is

avoided),

− COUNT - returns the number of rows in the table,

− FIRST, LAST - returns the index value for the first and last row

of the table, respectively,

− PRIOR (n), NEXT (n) - for a table row with the index n returns

the index value of the previous and next row, respectively,

− DELETE, DELETE (n), DELETE (m, n) - deletes all rows of the

table, deletes row with index n, deletes rows with indexes from

m to n, respectively.

The attributes are used in accordance with the syntax:

table_name.attribute

3.5. Explicit cursor

The explicit cursor enables to formulate PL/SQL queries directed to

many rows and their eventual handling. It is processed in the

following steps:

1. Cursor definition.

2. Open the cursor.

3. Fetch the value from the current cursor row(s).

4. Close the cursor.

The explicit cursor is defined in the DECLARE section of the block

according to the syntax:

CURSOR cursor_name [({parameter type [, ...]})] IS

SELECT_command;

Oracle database – programming Zbigniew Staszak

99

The SELECT command of the cursor does not contain an INTO

clause. Cursor parameters act as formal parameters and are (if they

occur) used in the SELECT command.

The explicit cursor is opened with the OPEN command according to

the syntax:

OPEN cursor_name [({argument [, ...]})];

The arguments of the cursor opening (if any) play the role of actual

parameters. They correspond to the formal parameters in the cursor

definition. The cursor parameter cannot be the name of relation or

view. When cursor opened, the cursor pointer indicates the first row of

the relation, which is returned by the SELECT command of cursor.

The value of the current row of the relation returned by the SELECT

command of cursor (after opening this is the first row) is fetched by

the FETCH command. This command has the syntax:

FETCH cursor_name

INTO {variable [, ...]} | record_variable;

Attribute values of the fetched row are inserted into the list of

variables (of types compatible with the types of subsequent

expressions of the cursor SELECT clause) or into the record variable

(of type cursor_name%ROWTYPE). This fetch takes cursor pointer to

the next cursor row. The first FETCH command with no row fetched

(all already fetched) will not cause an error, but only target variables

or record fields will be NULL. Since Oracle 8i, it is possible to fetch

the entire cursor content once to the collection using the BULK

COLLECT command. This is an element of the so-called primary

mass binding - this topic will be discussed later in the lecture.

The cursor closes with the CLOSE command according to the syntax:

CLOSE cursor_name;

Oracle database – programming Zbigniew Staszak

100

Like implicit cursors, explicit cursors have the attributes %FOUND,

%NOTFOUND, %ROWCOUNT, %ISOPEN, in this case preceded by

the cursor name. In addition to returning the standard TRUE, FALSE

and NULL values, fetching the attribute may result in the exception

ORA-1001 INVALID_CURSOR.

Attribute Description

%ISOPEN Returns TRUE if the cursor is open, FALSE

otherwise.

%FOUND Returns TRUE if the row was successfully fetched,

FALSE if no row was fetched. Before the first row

fetch NULL is returned. In case the cursor is not

yet open or has already been closed, an

INVALID_CURSOR exception is returned.

%NOTFOUND Returns TRUE if no row was returned, FALSE if

the row was successfully fetched. Before the first

row fetch NULL is returned. In case the cursor is

not yet open or has already been closed, an

INVALID_CURSOR exception is returned.

%ROWCOUNT Returns the number of cursor rows fetched so far.

In case the cursor is not yet open or has already

been closed, an INVALID_CURSOR exception is

returned.

The first lack of fetched row will cause the attribute %NOT FOUND

to be set to TRUE and the next lack will cause error ORA-1002.

Task. Find the total number of mice consumed monthly by cats with

individual rations greater than the average ration in the herd.

DECLARE

 CURSOR overavr IS

 SELECT NVL(mice_ration,0) mr,

 NVL(mice_extra,0) me

 FROM Cats

 WHERE NVL(mice_ration,0)+NVL(mice_extra,0)>=

 (SELECT AVG(NVL(mice_ration,0)+

 NVL(mice_extra,0))

 FROM Cats);

 sr NUMBER(4):=0; se NUMBER(4):=0; oa overavr%ROWTYPE;

 are_rows BOOLEAN:=FALSE;

Oracle database – programming Zbigniew Staszak

101

BEGIN

 OPEN overavr;

 LOOP

 FETCH overavr INTO oa;

 EXIT WHEN overavr%NOTFOUND;

 IF NOT are_rows THEN are_rows:=TRUE; END IF;

 sr:=sr+oa.mr; se:=se+oa.me;

 END LOOP;

 CLOSE overavr;

 IF are_rows

 THEN

 DBMS_OUTPUT.PUT('Monthly consumption: ');

 DBMS_OUTPUT.PUT(TO_CHAR(sr+se,999));

 DBMS_OUTPUT.PUT(' (including additions: ');

 DBMS_OUTPUT.PUT_LINE(TO_CHAR(se,999)||')');

 ELSE

 DBMS_OUTPUT.PUT_LINE('No cats!!!');

 END IF;

END;

anonymous block completed

Monthly consumption: 650 (including additions: 156)

The use of the FOR UPDATE clause in the SELECT command will

cause an exclusive lock (the lock is abolished after closing the cursor

- the COMMIT command does not work to that moment) for update

(UPDATE command) or to delete (DELETE command) rows in the

modified relation. If the OF keyword followed by a list of attributes

appears after FOR UPDATE, it will narrow down the lock to those

attributes only. To the rows modified by the UPDATE or DELETE

command which are indicated by the cursor one can reference in the

WHERE of these commands clause using clause CURRENT OF (the

clause available only in PL/SQL). The syntax of the WHERE clause

with CURRENT is as follows:

CURRENT OF cursor_name

Task. Provide staff for band 5 ('ROCKERS') by assigning to the band

the cats with the smallest mice ration in their current band. Delegate

a cat with nickname 'LOLA' as a head of the gang and fulfill her

postulate that there should be no cats in the new band performing the

function 'NICE'.

Oracle database – programming Zbigniew Staszak

102

DECLARE

 CURSOR for_mod IS

 SELECT nickname FROM Cats

 WHERE (((mice_ration,band_no) IN

 (SELECT MIN(NVL(mice_ration,0)),band_no

 FROM Cats

 GROUP BY band_no)) AND function<>'NICE')

 OR

 nickname='LOLA'

 FOR UPDATE OF band_no;

 re for_mod%ROWTYPE; are_rows BOOLEAN:=FALSE;

 no_cat EXCEPTION;

BEGIN

 OPEN for_mod;

 LOOP

 FETCH for_mod INTO re;

 EXIT WHEN for_mod%NOTFOUND;

 IF NOT are_rows THEN are_rows:=TRUE;

 END IF;

 UPDATE Cats

 SET band_no=5

 WHERE CURRENT OF for_mod;

 END LOOP;

 CLOSE for_mod;

 IF NOT are_rows

 THEN RAISE no_cat;

 END IF;

 UPDATE Bands

 SET name='LOLAS',

 band_chief='LOLA'

 WHERE band_no=5;

-- COMMIT;

EXCEPTION

 WHEN no_cat THEN DBMS_OUTPUT.PUT_LINE('No cat');

 WHEN OTHERS THEN DBMS_OUTPUT.PUT_LINE(SQLERRM);

 END;

anonymous block completed

SELECT nickname,B.name

FROM Cats JOIN Bands B USING(band_no)

WHERE band_no=5;

NICKNAME NAME

--------------- --------------------

LOLA LOLAS

EAR LOLAS

SMALL LOLAS

ROLLBACK;

rollback complete.

Oracle database – programming Zbigniew Staszak

103

As mentioned earlier, the cursor may have parameters. Below is a

fragment of code with an example of such a cursor.

...

CURSOR choice (par1 NUMBER,par2 VARCHAR2) IS

SELECT name,mice_ration,in_herd_since

FROM Cats

WHERE band_no=par1 AND function=par2;

...

bno:=1;fu:='NICE';

...

OPEN choice(bno,fu);

...

The above defined and open cursor returns the data of cats with

function 'NICE', belonging to the band No. 1.

3.5.1. FOR loop with cursor

Processing of cursor can be simplified by using so-called FOR loop

with cursor. This loop has the following syntax:

FOR record_variable IN cursor_name[({parameter type [, ...]})]

basic_loop;

The number of loops in a loop is equal to the number of rows returned

by the cursor. The record variable is implicitly declared as

cursor_name%ROWTYPE type. The cursor opens implicitly when the

loop is initialized. In each step of loop takes place implicit fetch row

of cursor to a record variable which can be processed in the body of

loop (basic loop). At the end implicit the cursor is closed. (also if the

exit from the loop occurs via the EXIT, GOTO or RAISE command).

Below is a fragment of code with an example of such a loop.

...

FOR no IN choice(bno,fu)

LOOP

 s:=s+no.przydzial_myszy -- operation on the cursor field!

END LOOP;

...

Oracle database – programming Zbigniew Staszak

104

The above loop supports the cursor named choice. It determines the

sum of rations of mice for cats belonging to the band number bno and

acting as fu. It should be noted here that in the case of such handling

of field of record variable (in the example above it is variable no) they

have names consistent with the names of the cursor fields specified

within his definition (SELECT clause of the cursor command).

Instead of in the DECLARE section of the block, the cursor can also

be defined directly in the FOR loop with the SELECT command of

cursor. Such a cursor is operated according to the following syntax:

FOR record_variable IN (SELECT_command)

basic_loop;

The body (content) of the cursor is defined by the SELECT command

after the keyword IN. It is also an explicit cursor, but it has no name

(it has not been defined in the DECLARE section) so there is no

access to its attributes and it cannot be parameterized.

Task. Use the FOR loop with cursor to find the cats with the longest

membership in their own bands.

DECLARE

 are_rows BOOLEAN:=FALSE;

 no_cats EXCEPTION;

BEGIN

 FOR re IN (SELECT nickname,in_herd_since,band_no

 FROM Cats

 WHERE (in_herd_since,band_no) IN

 (SELECT MIN(in_herd_since),band_no

 FROM Cats

 GROUP BY band_no))

 LOOP

 are_rows:=TRUE;

 DBMS_OUTPUT.PUT('Band '||re.band_no||' - longest ');

 DBMS_OUTPUT.PUT(re.nickname||' since ');

 DBMS_OUTPUT.PUT_LINE(TO_CHAR(re.in_herd_since,'YYYY-MM-

DD'));

 END LOOP;

 IF NOT are_rows

 THEN RAISE no_cats;

 END IF;

EXCEPTION

Oracle database – programming Zbigniew Staszak

105

 WHEN no_cats THEN DBMS_OUTPUT.PUT_LINE('No cats');

 WHEN OTHERS THEN DBMS_OUTPUT.PUT_LINE(SQLERRM);

END;

anonymous block completed

Band 1 - longest TIGER since 2002-01-01

Band 2 - longest FAST since 2006-07-21

Band 4 - longest REEF since 2006-10-15

Band 3 - longest ZOMBIES since 2004-03-16

By using the explicit cursor within the PL/SQL block, it was possible

to handle a SELECT query returning more than one row.

3.5.2. Cursor variables

The cursor variable is a reference type, i.e. a pointer to the memory

area where the query result and its attributes are stored. The cursor

used until now was the equivalent of the PL/SQL constant (static

cursor). The syntax for defining the type of a reference variable for a

cursor is as follows:

TYPE cursor_type_name IS REF CURSOR;

After defining the cursor variable type, one only need to declare

variable of this type.

Like the static cursor, the cursor variable must be opened (de facto

must be set its value). This is done according to the syntax:

OPEN cursor_variable FOR SELECT_command;

The SELECT command defines the cursor pointed to by the cursor

variable. Fetching rows from the cursor variable and closing the

cursor variable is done in a similar way to these operations for a static

cursor.

Oracle database – programming Zbigniew Staszak

106

The following is an example of using one cursor variable for its

various values.

DECLARE

 TYPE cursor_type IS REF CURSOR;

 cursor_v cursor_type;

 ni Cats.nickname%TYPE;

 mr Cats.mice_ration%TYPE;

 me Cats.mice_extra%TYPE;

 en Enemies.enemy_name%TYPE;

 hd Enemies.hostility_degree%TYPE;

 relation_code VARCHAR2(2):='&1';

BEGIN

 IF relation_code ='CA'

 THEN OPEN cursor_v FOR

 SELECT nickname,mice_ration,mice_extra

 FROM Cats

 WHERE mice_ration>50;

 ELSIF relation_code ='WR'

 THEN OPEN cursor_v FOR

 SELECT enemy_name,hostility_degree

 FROM Enemies

 WHERE hostility_degree>5;

 ELSE

 RAISE_APPLICATION_ERROR(-20103,

 'This relation is not supported');

 END IF;

 LOOP

 IF relation_code ='CA' THEN

 FETCH cursor_v INTO ni,mr,me;

 EXIT WHEN cursor_v%NOTFOUND;

 ...

 ELSE

 FETCH cursor_v INTO en,hd;

 EXIT WHEN cursor_v%NOTFOUND;

 ...

 END IF;

 END LOOP;

 CLOSE cursor_v;

END;

Oracle database – programming Zbigniew Staszak

107

There are some restrictions on the use of the cursor variable (for

Oracle 7.3 and above). They are presented below.

− one cannot use the %ROWTYPE attribute within the cursor

variable,

− PL/SQL collections cannot store cursor variables,

− only since Oracle 8i version the SELECT command defining the

cursor can contain the FOR UPDATE clause,

− cursor variables cannot be declared in the package (one can only

define the cursor type in it).

